ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of optical turbulence in free atmosphere above Mt.Maidanak in 2005-2007

218   0   0.0 ( 0 )
 نشر من قبل Nicolai Shatsky
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. Kornilov




اسأل ChatGPT حول البحث

Results of 2005-2007 campaign of measurement of the optical turbulence vertical distribution above Mt. Maidanak are presented. Measurements are performed with the MASS (Multi-Aperture Scintillation Sensor) device which is widely used in similar studies during last years at several observatories across the world. The data analysis shows that median seeing in free atmosphere (at altitudes above 0.5km) is 0.46 arcsec and median isoplanatic angle is 2.47 arcsec. Given a rather long atmospheric coherence time (about 7 ms when the seeing is good) such conditions are favorable for adaptive optics and interferometry in the visible and near-IR.

قيم البحث

اقرأ أيضاً

71 - E. Masciadri 2010
The internal antarctic plateau revealed in the last years to be a site with interesting potentialities for the astronomical applications due to the extreme dryness and low temperatures, the typical high altitude of the plateau, the weak level of turb ulence in the free atmosphere down to a just few tens of meters from the ground and the thin optical turbulence layer developed at the ground. The main goal of a site testing assessment above the internal antarctic plateau is to characterize the site (optical turbulence and classical meteorological parameters) and to quantify which is the gain we might obtain with respect to equivalent astronomical observations done above mid-latitude sites to support plans for future astronomical facilities. Our group is involved, since a few years, in studies related to the assessment of this site for astronomical applications that include the characterization of the meteorological parameters and optical turbulence provided by general circulation models as well as mesoscale atmospherical models and the quantification of the performances of Adaptive Optics (AO) systems. In this talk I will draw the status of art of this site assessment putting our studies in the context of the wide international site testing activity that has been done in Antarctica. I will focus on the site assessment relevant for astronomical applications to be done in the visible up to the near infrared ranges, i.e. those ranges for which the optical turbulence represents a perturbing element for the quality of the images and the AO techniques an efficient tool to correct these wavefront perturbations.
In this paper we calculate the delay of the arrival times of visible photons on the focal plane of a telescope and its fluctuations as function of local atmospheric conditions (temperature, pressure, chemical composition, seeing values) and telescope diameter. The aim is to provide a model for delay and its fluctuations accurate to the picosecond level, as required by several very high time resolution astrophysical applications, such as comparison of radio and optical data on Giant Radio Bursts from optical pulsars, and Hanbury Brown Twiss Intensity Interferometry with Cerenkov light detectors. The results here presented have been calculated for the ESO telescopes in Chile (NTT, VLT, E-ELT), but the model can be easily applied to other sites and telescope diameters. Finally, we describe a theoretical mathematical model for calculating the Fried radius through the study of delay time fluctuations.
In two recent papers the mesoscale model Meso-NH, joint with the Astro-Meso-NH package, has been validated at Dome C, Antarctica, for the characterization of the optical turbulence. It has been shown that the meteorological parameters (temperature an d wind speed, from which the optical turbulence depends on) as well as the Cn2 profiles above Dome C were correctly statistically reproduced. The three most important derived parameters that characterize the optical turbulence above the internal antarctic plateau: the surface layer thickness, the seeing in the free-atmosphere and in the total atmosphere showed to be in a very good agreement with observations. Validation of Cn2 has been performed using all the measurements of the optical turbulence vertical distribution obtained in winter so far. In this paper, in order to investigate the ability of the model to discriminate between different turbulence conditions for site testing, we extend the study to two other potential astronomical sites in Antarctica: Dome A and South Pole, which we expect to be characterized by different turbulence conditions. The optical turbulence has been calculated above these two sites for the same 15 nights studied for Dome C and a comparison between the three sites has been performed.
Very high energy (VHE; >100 GeV) observations of a sample of selected active galactic nuclei (AGN) were performed between January 2005 and April 2007 with the High Energy Stereoscopic System (HESS), an array of imaging atmospheric-Cherenkov telescope s. Significant detections are reported elsewhere for many of these objects. Here, integral flux upper limits for twelve candidate very high energy (VHE; >100 GeV) gamma-ray emitters are presented. In addition, results from HESS observations of four known VHE-bright AGN are given although no significant signal is measured. For three of these AGN (1ES 1101-232, 1ES 1218+304, and Mkn 501) simultaneous data were taken with the Suzaku X-ray satellite.
The Ulysses spacecraft has been orbiting the Sun on a highly inclined ellipse since it encountered Jupiter in February 1992. Since then it made almost three revolutions about the Sun. Here we report on the final three years of data taken by the on-bo ard dust detector. During this time, the dust detector recorded 609 dust impacts of particles with masses 10^-16 g <= m <= 10^-7 g, bringing the mission total to 6719 dust data sets. The impact rate varied from a low value of 0.3 per day at high ecliptic latitudes to 1.5 per day in the inner solar system. The impact direction of the majority of impacts between 2005 and 2007 is compatible with particles of interstellar origin, the rest are most likely interplanetary particles. We compare the interstellar dust measurements from 2005/2006 with the data obtained during earlier periods (1993/1994) and (1999/2000) when Ulysses was traversing the same spatial region at southern ecliptic latitudes but the solar cycle was at a different phase. During these three intervals the impact rate of interstellar grains varied by more than a factor of two. Furthermore, in the two earlier periods the grain impact direction was in agreement with the flow direction of the interstellar helium while in 2005/2006 we observed a shift in the approach direction of the grains by approximately 30 deg away from the ecliptic plane. The reason for this shift remains unclear but may be connected with the configuration of the interplanetary magnetic field during solar maximum. We also find that the dust measurements are in agreement with the interplanetary flux model of Staubach et al. (1997) which was developed to fit a 5-year span of Ulysses data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا