ترغب بنشر مسار تعليمي؟ اضغط هنا

Upper Limits from HESS Observations of AGN in 2005-2007

95   0   0.0 ( 0 )
 نشر من قبل Wystan Benbow
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Very high energy (VHE; >100 GeV) observations of a sample of selected active galactic nuclei (AGN) were performed between January 2005 and April 2007 with the High Energy Stereoscopic System (HESS), an array of imaging atmospheric-Cherenkov telescopes. Significant detections are reported elsewhere for many of these objects. Here, integral flux upper limits for twelve candidate very high energy (VHE; >100 GeV) gamma-ray emitters are presented. In addition, results from HESS observations of four known VHE-bright AGN are given although no significant signal is measured. For three of these AGN (1ES 1101-232, 1ES 1218+304, and Mkn 501) simultaneous data were taken with the Suzaku X-ray satellite.



قيم البحث

اقرأ أيضاً

The Ulysses spacecraft has been orbiting the Sun on a highly inclined ellipse since it encountered Jupiter in February 1992. Since then it made almost three revolutions about the Sun. Here we report on the final three years of data taken by the on-bo ard dust detector. During this time, the dust detector recorded 609 dust impacts of particles with masses 10^-16 g <= m <= 10^-7 g, bringing the mission total to 6719 dust data sets. The impact rate varied from a low value of 0.3 per day at high ecliptic latitudes to 1.5 per day in the inner solar system. The impact direction of the majority of impacts between 2005 and 2007 is compatible with particles of interstellar origin, the rest are most likely interplanetary particles. We compare the interstellar dust measurements from 2005/2006 with the data obtained during earlier periods (1993/1994) and (1999/2000) when Ulysses was traversing the same spatial region at southern ecliptic latitudes but the solar cycle was at a different phase. During these three intervals the impact rate of interstellar grains varied by more than a factor of two. Furthermore, in the two earlier periods the grain impact direction was in agreement with the flow direction of the interstellar helium while in 2005/2006 we observed a shift in the approach direction of the grains by approximately 30 deg away from the ecliptic plane. The reason for this shift remains unclear but may be connected with the configuration of the interplanetary magnetic field during solar maximum. We also find that the dust measurements are in agreement with the interplanetary flux model of Staubach et al. (1997) which was developed to fit a 5-year span of Ulysses data.
Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E>100 GeV) {gamma}-ray sources. In this work, w e present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of ~570 hours. The sample includes several unidentified Fermi-Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi-LAT catalog which are contained within the field of view of the VERITAS observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have a spectroscopic distance estimate. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of four of them. For each of the blazars included in our sample we provide the flux upper limit in the VERITAS energy band. We also study the properties of the significance distributions and we present the result of a stacked analysis of the data-set, which shows a 4 {sigma} excess.
We present the results of a long M87 monitoring campaign in very high energy $gamma$-rays with the MAGIC-I Cherenkov telescope. We aim to model the persistent non-thermal jet emission by monitoring and characterizing the very high energy $gamma$-ray emission of M87 during a low state. A total of 150,h of data were taken between 2005 and 2007 with the single MAGIC-I telescope, out of which 128.6,h survived the data quality selection. We also collected data in the X-ray and textit{Fermi}--LAT bands from the literature (partially contemporaneous). No flaring activity was found during the campaign. The source was found to be in a persistent low-emission state, which was at a confidence level of $7sigma$. We present the spectrum between 100,GeV and 2,TeV, which is consistent with a simple power law with a photon index $Gamma=2.21pm0.21$ and a flux normalization at 300,GeV of $(7.7pm1.3) times 10^{-8}$ TeV$^{-1}$ s$^{-1}$ m$^{-2}$. The extrapolation of the MAGIC spectrum into the GeV energy range matches the previously published textit{Fermi}--LAT spectrum well, covering a combined energy range of four orders of magnitude with the same spectral index. We model the broad band energy spectrum with a spine layer model, which can satisfactorily describe our data.
148 - Karsten Berger 2011
We present the results of a long M87 monitoring campaign in very high energy $gamma$-rays with the MAGIC-I Cherenkov telescope. A total of 150 hours of data was gathered between 2005 and 2007. No flaring activity was found during that time. Neverthel ess, we have found an apparently steady and weak signal at the level of $7sigma$. We present the spectrum between 100 GeV and 2 TeV, which is consistent with a simple power law with a spectral index $-2.21pm0.21$ and a flux normalization (at 300 GeV) of $5.4pm1.1 times 10^{-8} frac{1}{mathrm{TeV s m}^{2}}$. It complements well with the previously published Fermi spectrum, covering an energy range of four orders of magnitude without apparent change in the spectral index.
265 - V. Kornilov 2009
Results of 2005-2007 campaign of measurement of the optical turbulence vertical distribution above Mt. Maidanak are presented. Measurements are performed with the MASS (Multi-Aperture Scintillation Sensor) device which is widely used in similar studi es during last years at several observatories across the world. The data analysis shows that median seeing in free atmosphere (at altitudes above 0.5km) is 0.46 arcsec and median isoplanatic angle is 2.47 arcsec. Given a rather long atmospheric coherence time (about 7 ms when the seeing is good) such conditions are favorable for adaptive optics and interferometry in the visible and near-IR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا