ﻻ يوجد ملخص باللغة العربية
In two recent papers the mesoscale model Meso-NH, joint with the Astro-Meso-NH package, has been validated at Dome C, Antarctica, for the characterization of the optical turbulence. It has been shown that the meteorological parameters (temperature and wind speed, from which the optical turbulence depends on) as well as the Cn2 profiles above Dome C were correctly statistically reproduced. The three most important derived parameters that characterize the optical turbulence above the internal antarctic plateau: the surface layer thickness, the seeing in the free-atmosphere and in the total atmosphere showed to be in a very good agreement with observations. Validation of Cn2 has been performed using all the measurements of the optical turbulence vertical distribution obtained in winter so far. In this paper, in order to investigate the ability of the model to discriminate between different turbulence conditions for site testing, we extend the study to two other potential astronomical sites in Antarctica: Dome A and South Pole, which we expect to be characterized by different turbulence conditions. The optical turbulence has been calculated above these two sites for the same 15 nights studied for Dome C and a comparison between the three sites has been performed.
In a recent paper the authors presented an extended study aiming at simulating the classical meteorological parameters and the optical turbulence at Dome C during the winter with the atmospherical mesoscale model Meso-NH. A statistical analysis has b
Dome C in Antarctica is a promising site for photometric observations thanks to the continuous night during the Antarctic winter and favorable weather conditions. We developed instruments to assess the quality of this site for photometry in the visib
ASTEP South is an Antarctic Search for Transiting Exo- Planets in the South pole field, from the Concordia station, Dome C, Antarctica. The instrument consists of a thermalized 10 cm refractor observing a fixed 3.88degree x 3.88degree field of view t
The optical turbulence above Dome C in winter is mainly concentrated in the first tens of meters above the ground. Properties of this so-called surface layer (SL) were investigated during the period 2007-2012 by a set of sonics anemometers placed on
We present long term site testing statistics obtained at Dome C, Antarctica with various experiments deployed within the Astroconcordia programme since 2003. We give values of integrated turbulence parameters in the visible at ground level and above