ﻻ يوجد ملخص باللغة العربية
We introduce a scheme for efficiently describing pure states of strongly correlated fermions in higher dimensions using unitary circuits featuring a causal cone. A local way of computing local expectation values is presented. We formulate a dynamical reordering scheme, corresponding to time-adaptive Jordan-Wigner transformation, that avoids nonlocal string operators. Primitives of such a reordering scheme are highlighted. Fermionic unitary circuits can be contracted with the same complexity as in the spin case. The scheme gives rise to a variational description of fermionic models not suffering from a sign problem. We present numerical examples on $9times 9$ and $6times 6$ fermionic lattice model to show the functioning of the approach.
Using the adaptive time-dependent density-matrix renormalization group method, we study the time evolution of strongly correlated spinless fermions on a one-dimensional lattice after a sudden change of the interaction strength. For certain parameter
We analyze the strongly correlated regime of a two-component trapped ultracold fermionic gas in a synthetic non-Abelian U(2) gauge potential, that consists of both a magnetic field and a homogeneous spin-orbit coupling. This gauge potential deforms t
We review recent advances in experimental and theoretical understanding of spin transport in strongly interacting Fermi gases. The central new phenomenon is the observation of a lower bound on the (bare) spin diffusivity in the strongly interacting r
Let $H_1, H_2$ be Hilbert spaces of the same finite dimension $ge2$, and $C$ an arbitrary quantum circuit with (principal) input state in $H_1$ and (principal) output state in $H_2$. $C$ may use ancillas and produce garbage which is traced out. $C$ m
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynam