ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal Spin Transport and Quantum Bounds for Unitary Fermions

84   0   0.0 ( 0 )
 نشر من قبل Tilman Enss
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review recent advances in experimental and theoretical understanding of spin transport in strongly interacting Fermi gases. The central new phenomenon is the observation of a lower bound on the (bare) spin diffusivity in the strongly interacting regime. Transport bounds are of broad interest for the condensed matter community, with a conceptual similarity to observed bounds in shear viscosity and charge conductivity. We discuss the formalism of spin hydrodynamics, how dynamics are parameterized by transport coefficients, the effect of confinement, the role of scale invariance, the quasi-particle picture, and quantum critical transport. We conclude by highlighting open questions, such as precise theoretical bounds, relevance to other phases of matter, and extensions to lattice systems.



قيم البحث

اقرأ أيضاً

We investigate the transport of a Fermi gas with unitarity-limited interactions across the superfluid phase transition, probing its response to a direct current (dc) drive through a tunnel junction. As the superfluid critical temperature is crossed f rom below, we observe the evolution from a highly nonlinear to an Ohmic conduction characteristics, associated with the critical breakdown of the Josephson dc current induced by pair condensate depletion. Moreover, we reveal a large and dominant anomalous contribution to resistive currents, which reaches its maximum at the lowest attained temperature, fostered by the tunnel coupling between the condensate and phononic Bogoliubov-Anderson excitations. Increasing the temperature, while the zeroing of supercurrents marks the transition to the normal phase, the conductance drops considerably but remains much larger than that of a normal, uncorrelated Fermi gas tunneling through the same junction. We attribute such enhanced transport to incoherent tunneling of sound modes, which remain weakly damped in the collisional hydrodynamic fluid of unpaired fermions at unitarity.
Strongly correlated systems are often associated with an underlying quantum critical point which governs their behavior in the finite temperature phase diagram. Their thermodynamical and transport properties arise from critical fluctuations and follo w universal scaling laws. Here, we develop a microscopic theory of thermal transport in the quantum critical regime expressed in terms of a thermal sum rule and an effective scattering time. We explicitly compute the characteristic scaling functions in a quantum critical model system, the unitary Fermi gas. Moreover, we derive an exact thermal sum rule for heat and energy currents and evaluate it numerically using the nonperturbative Luttinger-Ward approach. For the thermal scattering times we find a simple quantum critical scaling form. Together, the sum rule and the scattering time determine the heat conductivity, thermal diffusivity, Prandtl number and sound diffusivity from high temperatures down into the quantum critical regime. The results provide a quantitative description of recent sound attenuation measurements in ultracold Fermi gases.
Strongly correlated materials are expected to feature unconventional transport properties, such that charge, spin, and heat conduction are potentially independent probes of the dynamics. In contrast to charge transport, the measurement of spin transp ort in such materials is highly challenging. We observed spin conduction and diffusion in a system of ultracold fermionic atoms that realizes the half-filled Fermi-Hubbard model. For strong interactions, spin diffusion is driven by super-exchange and doublon-hole-assisted tunneling, and strongly violates the quantum limit of charge diffusion. The technique developed in this work can be extended to finite doping, which can shed light on the complex interplay between spin and charge in the Hubbard model.
We study experimentally the far-from-equilibrium dynamics in ferromagnetic Heisenberg quantum magnets realized with ultracold atoms in an optical lattice. After controlled imprinting of a spin spiral pattern with adjustable wave vector, we measure th e decay of the initial spin correlations through single-site resolved detection. On the experimentally accessible timescale of several exchange times we find a profound dependence of the decay rate on the wave vector. In one-dimensional systems we observe diffusion-like spin transport with a dimensionless diffusion coefficient of 0.22(1). We show how this behavior emerges from the microscopic properties of the closed quantum system. In contrast to the one-dimensional case, our transport measurements for two-dimensional Heisenberg systems indicate anomalous super-diffusion.
We investigate the phase diagrams of a one-dimensional lattice model of fermions and of a spin chain with interactions extending up to next-nearest neighbour range. In particular, we investigate the appearance of regions with dominant pairing physics in the presence of nearest-neighbour and next-nearest-neighbour interactions. Our analysis is based on analytical calculations in the classical limit, bosonization techniques and large-scale density-matrix renormalization group numerical simulations. The phase diagram, which is investigated in all relevant filling regimes, displays a remarkably rich collection of phases, including Luttinger liquids, phase separation, charge-density waves, bond-order phases, and exotic cluster Luttinger liquids with paired particles. In relation with recent studies, we show several emergent transition lines with a central charge $c = 3/2$ between the Luttinger-liquid and the cluster Luttinger liquid phases. These results could be experimentally investigated using highly-tunable quantum simulators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا