ﻻ يوجد ملخص باللغة العربية
In order to assess qualitatively the ejecta geometry of stripped-envelope core-collapse supernovae, we investigate 98 late-time spectra of 39 objects, many of them previously unpublished. We perform a Gauss-fitting of the [O I] 6300, 6364 feature in all spectra, with the position, full width at half maximum (FWHM) and intensity of the 6300 Gaussian as free parameters, and the 6364 Gaussian added appropriately to account for the doublet nature of the [O I] feature. On the basis of the best-fit parameters, the objects are organised into morphological classes, and we conclude that at least half of all Type Ib/c supernovae must be aspherical. Bipolar jet-models do not seem to be universally applicable, as we find too few symmetric double-peaked [O I] profiles. In some objects the [O I] line exhibits a variety of shifted secondary peaks or shoulders, interpreted as blobs of matter ejected at high velocity and possibly accompanied by neutron-star kicks to assure momentum conservation. At phases earlier than ~200d, a systematic blueshift of the [O I] 6300, 6364 line centroids can be discerned. Residual opacity provides the most convincing explanation of this phenomenon, photons emitted on the rear side of the SN being scattered or absorbed on their way through the ejecta. Once modified to account for the doublet nature of the oxygen feature, the profile of Mg I] 4571 at sufficiently late phases generally resembles that of [O I] 6300, 6364, suggesting negligible contamination from other lines and confirming that O and Mg are similarly distributed within the ejecta.
While the connection between Long Gamma-Ray Bursts (GRBs) and Type Ib/c Supernovae (SNe Ib/c) from stripped stars has been well-established, one key outstanding question is what conditions and factors lead to each kind of explosion in massive strippe
Inhomogeneities in a synchrotron source can severely affect the conclusions drawn from observations regarding the source properties. However, their presence is not always easy to establish, since several other effects can give rise to similar observe
We study the imprint of magnetic fields B on late-time IR line profiles and light curves of Type Ia Supernovae. As a benchmark, we use the explosion of a Chandrasekhar mass M_{Ch White Dwarf (WD) and, specifically, a delayed detonation model. We assu
Recent studies find that some early-type galaxies host Type II or Ibc supernovae (SNe II, Ibc). This may imply recent star-formation activities in these SNe host galaxies, but a massive star origin of the SNe Ib so far observed in early-type galaxies
Aims. We present and analyse late-time observations of the type-Ib supernova with possible pre-supernova progenitor detection, iPTF13bvn, taken at $sim$300 days after the explosion, and discuss these in the context of constraints on the supernovas pr