ﻻ يوجد ملخص باللغة العربية
We study the imprint of magnetic fields B on late-time IR line profiles and light curves of Type Ia Supernovae. As a benchmark, we use the explosion of a Chandrasekhar mass M_{Ch White Dwarf (WD) and, specifically, a delayed detonation model. We assume WDs with initial magnetic surface fields between 1 and 1E9G. We discuss large-scale dipole and small-scale magnetic fields. We find that the [Fe II] line at 1.644 mu can be used to analyze the overall chemical and density structure of the exploding WD up to day 200 without considering B. Subsequently, positron transport and magnetic field effects become important. By day 500, the profile becomes sensitive to the morphology of B and directional dependent for dipole fields. Small or no directional dependence of the spectra is found for small-scale B. After about 200 days, persistent broad-line, flat-topped or stumpy profiles require high density burning which is the signature of a WD close to M_Ch. Narrow peaked profiles are a signature of chemical mixing or sub-MCh WDs. Good time coverage is required to separate the effects of optical depth, the size and morphology of B, and the aspect angle of the observer. The spectra require a resolution of about 500 km/sec and a signal to noise ratio of about 20%. Line blending effect are demonstrated at the example of equally prominent features at about 1.5 and 1.8 mu. For some SNeIa, spectra beyond day 300 have been observed which lend support for M_Ch mass explosions in at least some cases, and require magnetic fields equal to or in excess of 1E6G. We briefly discuss the effects of the size and morphology of B on light curves and the limitations in light of the diversity of SNeIa. We argue that line profiles are a more direct measurement of B.
We examine the late-time (t > 200 days after peak brightness) spectra of Type Iax supernovae (SNe Iax), a low-luminosity, low-energy class of thermonuclear stellar explosions observationally similar to, but distinct from, Type Ia supernovae. We prese
We present optical spectra of SN 2007gr, SN 2007rz, SN 2007uy, SN 2008ax, and SN 2008bo obtained in the nebular phase when line profiles can lead to information about the velocity distribution of the exploded cores. We compare these to 13 other publi
Ground-based optical spectra and Hubble Space Telescope images of ten core-collapse supernovae (CCSNe) obtained several years to decades after outburst are analyzed with the aim of understanding the general properties of their late-time emissions. Ne
In order to assess qualitatively the ejecta geometry of stripped-envelope core-collapse supernovae, we investigate 98 late-time spectra of 39 objects, many of them previously unpublished. We perform a Gauss-fitting of the [O I] 6300, 6364 feature in
An unusual Eddington-limited thermonuclear X-ray burst was detected from the accreting neutron star in 2S 0918-549 with the Rossi X-ray Timing Explorer. The burst commenced with a brief (40 ms) precursor and maintained near-Eddington fluxes during th