ترغب بنشر مسار تعليمي؟ اضغط هنا

Type Ib/c Supernovae with and without Gamma-Ray Bursts

133   0   0.0 ( 0 )
 نشر من قبل Maryam Modjaz
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Maryam Modjaz




اسأل ChatGPT حول البحث

While the connection between Long Gamma-Ray Bursts (GRBs) and Type Ib/c Supernovae (SNe Ib/c) from stripped stars has been well-established, one key outstanding question is what conditions and factors lead to each kind of explosion in massive stripped stars. One promising line of attack is to investigate what sets apart SNe Ib/c with GRBs from those without GRBs. Here, I briefly present two observational studies that probe the SN properties and the environmental metallicities of SNe Ib/c (specifically broad-lined SNe Ic) with and without GRBs. I present an analysis of expansion velocities based on published spectra and on the homogeneous spectroscopic CfA data set of over 70 SNe of Types IIb, Ib, Ic and Ic-bl, which triples the world supply of well-observed Stripped SNe. Moreover, I demonstrate that a meta-analysis of the three published SN Ib/c metallicity data sets, when including only values at the SN positions to probe natal oxygen abundances, indicates at very high significance that indeed SNe Ic erupt from more metal-rich environments than SNe Ib, while SNe Ic-bl with GRBs still prefer, on average, more metal-poor sites than those without GRBs.



قيم البحث

اقرأ أيضاً

62 - D.Yu.Tsvetkov 2001
The data on the location of gamma-ray bursts (GRBs) relative to their host galaxies are used to derive the distribution of surface density of GRBs along the galaxy radius. It is shown that the gradient of GRB surface density changes abruptly near the half-light radius. In the central parts of galaxies the distribution of GRBs resembles closely the luminosity distribution, while in the outer parts the galactic surface brightness falls much steeper than the GRBs density. The radial distribution of type Ib/c supernovae is investigated on the basis of enlarged statistics. It is shown that SNe Ib/c do not differ significantly from other types of supernovae and their distribution is more similar to the one for recent star formation sites than that of GRBs. In spite of the poor statistics of GRBs, the difference in the distributions of active star formation regions and GRBs appears to be significant. We get the Kolmogorov-Smirnov probability P_ks of only 4% that GRBs and star-forming sites belong to the same distribution. The correlation of GRBs with the distribution of dark matter in the outer parts of galaxies is not excluded.
144 - Maryam Modjaz 2015
We present the first systematic investigation of spectral properties of 17 Type Ic Supernovae (SNe Ic), 10 broad-lined SNe Ic (SNe Ic-bl) without observed Gamma-Ray Bursts (GRBs) and 11 SNe Ic-bl with GRBs (SN-GRBs) as a function of time in order to probe their explosion conditions and progenitors. We analyze a total of 407 spectra, which were drawn from published spectra of individual SNe as well as from the densely time-sampled spectra data of Modjaz et al. (2014). In order to quantify the diversity of the SN spectra as a function of SN subtype, we construct average spectra of SNe Ic, SNe Ic-bl without GRBs and SNe Ic-bl with GRBs. We find that SN 1994I is not a typical SN Ic, in contrast to common belief, while the spectra of SN 1998bw/GRB 980425 are representative of mean spectra of SNe Ic-bl. We measure the ejecta absorption and width velocities using a new method described here and find that SNe Ic-bl with GRBs, on average, have quantifiably higher absorption velocities, as well as broader line widths than SNe without observed GRBs. In addition, we search for correlations between SN-GRB spectral properties and the energies of their accompanying GRBs. Finally, we show that the absence of clear He lines in optical spectra of SNe Ic-bl, and in particular of SN-GRBs, is not due to them being too smeared out due to the high velocities present in the ejecta. This implies that the progenitor stars of SN-GRBs are probably He-free, in addition to being H-free, which puts strong constraints on the stellar evolutionary paths needed to produce such SN-GRB progenitors at the observed low metallicities.
The existence of inhomogeneities in the observed Universe modifies the distance-redshift relations thereby affecting the results of cosmological tests in comparison to the ones derived assuming spatially uniform models. By modeling the inhomogeneitie s through a Zeldovich-Kantowski-Dyer-Roeder (ZKDR) approach which is phenomenologically characterized by a smoothness parameter $alpha$, we rediscuss the constraints on the cosmic parameters based on Supernovae type Ia and Gamma-Ray Bursts (GRBs) data. The present analysis is restricted to a flat $Lambda$CDM model with the reasonable assumption that $Lambda$ does not clump. A $chi^{2}$-analysis using 557 SNe Ia data from the Union2 Compilation Data (Amanullah {it et al.} 2010) constrains the pair of parameters ($Omega_m, alpha$) to $Omega_m=0.27_{-0.03}^{+0.08}$($2sigma$) and $alpha geq 0.25$. A similar analysis based only on 59 Hymnium GRBs (Wei 2010) constrains the matter density parameter to be $Omega_m= 0.35^{+0.62}_{-0.24}$ ($2sigma$) while all values for the smoothness parameter are allowed. By performing a joint analysis, it is found that $Omega_m = 0.27^{+0.06}_{-0.03}$ and $alpha geq 0.52$. As a general result, although considering that current GRB data alone cannot constrain the smoothness $alpha$ parameter our analysis provides an interesting cosmological probe for dark energy even in the presence of inhomogeneities.
215 - David Bersier 2012
The connection between long GRBs and supernovae is now well established. I briefly review the evidence in favor of this connection and summarise where we are observationally. I also use a few events to exemplify what should be done and what type of d ata are needed. I also look at what we can learn from looking at SNe not associated with GRBs and see how GRBs fit into the broad picture of stellar explosions.
In order to assess qualitatively the ejecta geometry of stripped-envelope core-collapse supernovae, we investigate 98 late-time spectra of 39 objects, many of them previously unpublished. We perform a Gauss-fitting of the [O I] 6300, 6364 feature in all spectra, with the position, full width at half maximum (FWHM) and intensity of the 6300 Gaussian as free parameters, and the 6364 Gaussian added appropriately to account for the doublet nature of the [O I] feature. On the basis of the best-fit parameters, the objects are organised into morphological classes, and we conclude that at least half of all Type Ib/c supernovae must be aspherical. Bipolar jet-models do not seem to be universally applicable, as we find too few symmetric double-peaked [O I] profiles. In some objects the [O I] line exhibits a variety of shifted secondary peaks or shoulders, interpreted as blobs of matter ejected at high velocity and possibly accompanied by neutron-star kicks to assure momentum conservation. At phases earlier than ~200d, a systematic blueshift of the [O I] 6300, 6364 line centroids can be discerned. Residual opacity provides the most convincing explanation of this phenomenon, photons emitted on the rear side of the SN being scattered or absorbed on their way through the ejecta. Once modified to account for the doublet nature of the oxygen feature, the profile of Mg I] 4571 at sufficiently late phases generally resembles that of [O I] 6300, 6364, suggesting negligible contamination from other lines and confirming that O and Mg are similarly distributed within the ejecta.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا