ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise Balancing of Viscous and Radiation Forces on a Particle in Liquid-Filled Photonic Bandgap Fiber

72   0   0.0 ( 0 )
 نشر من قبل Tijmen Euser
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is shown that, in the liquid-filled hollow core of a single-mode photonic crystal fiber, a micron-sized particle can be held stably against a fluidic counter-flow using radiation pressure, and moved to and fro (over 10s of cm) by ramping the laser power up and down. The results represent a major advance over previous work on particle transport in optically multimode liquid-filled fibers, in which the fluctuating transverse field pattern renders the radiation and trapping forces unpredictable. The counter-flowing liquid can be loaded with sequences of chemicals in precisely controlled concentrations and doses, making possible studies of single particles, vesicles or cells.

قيم البحث

اقرأ أيضاً

We show that two-photon absorption (TPA) in Rubidium atoms can be greatly enhanced by the use of a hollow-core photonic bandgap fiber. We investigate off-resonant, degenerate Doppler-free TPA on the 5S1/2 - 5D5/2 transition and observe 1% absorption of a pump beam with a total power of only 1 mW in the fiber. These results are verified by measuring the amount of emitted blue fluorescence and are consistent with the theoretical predictions which indicate that transit time effects play an important role in determining the two-photon absorption cross-section in a confined geometry.
87 - Atakan B. Ari 2020
We study the spectral properties of the thermal force giving rise to the Brownian motion of a continuous mechanical system -- namely, a nanomechanical beam resonator -- in a viscous liquid. To this end, we perform two separate sets of experiments. Fi rst, we measure the power spectral density (PSD) of the position fluctuations of the resonator around its fundamental mode at its center. Then, we measure the frequency-dependent linear response of the resonator, again at its center, by driving it with a harmonic force that couples well to the fundamental mode. These two measurements allow us to determine the PSD of the Brownian force noise acting on the structure in its fundamental mode. The PSD of the force noise extracted from multiple resonators spanning a broad frequency range displays a colored spectrum. Using a single-mode theory, we show that, around the fundamental resonances of the resonators, the PSD of the force noise follows the dissipation of a blade oscillating in a viscous liquid -- by virtue of the fluctuation-dissipation theorem.
In stationary nonequilibrium states a coupling between hydrodynamic modes causes thermal fluctuations to become long ranged inducing nonequilibrium Casimir forces or pressures. Here we consider nonequilibrium Casimir pressures induced in liquids by a velocity gradient. Specifically, we have obtained explicit expressions for the magnitude of the shear-induced pressure enhancement in a liquid layer between two horizontal plates that complete and correct results previously presented in the literature. In contrast to nonequiibrium Casimir pressures induced by a temperature gradient, kinetic theory shows that nonequilibrium contributions from short-range fluctuations are no longer negligible. In addition, it is noted that computer simulations of model fluids in shear observe effects from molecular correlations at nanoscales that have a different physical origin. The idea that such computer simulations probe shear-induced pressures resulting from coupling of long-wavelength hydrodynamic modes is erroneous.
Although supercontinuum sources are readily available for the visible and near infrared, and recently also for the mid-IR, many areas of biology, chemistry and physics would benefit greatly from the availability of compact, stable and spectrally brig ht deep ultraviolet (DUV) and vacuum ultraviolet (VUV) supercontinuum sources. Such sources have however not yet been developed. Here we report the generation of a bright supercontinuum, spanning more than three octaves from 124 nm to beyond 1200 nm, in hydrogen-filled kagome-style hollow-core photonic crystal fiber (kagome-PCF). Few-{mu}J, 30 fs pump pulses at wavelength 805 nm are launched into the fiber, where they undergo self-compression via the Raman-enhanced Kerr effect. Modeling indicates that before reaching a minimum sub-cycle pulse duration of ~1 fs, much less than one period of molecular vibration (8 fs), nonlinear reshaping of the pulse envelope, accentuated by self-steepening and shock formation, creates an ultrashort feature that causes impulsive excitation of long-lived coherent molecular vibrations. These phase-modulate a strong VUV dispersive wave (at 182 nm or 6.8 eV) on the trailing edge of the pulse, further broadening the spectrum into the VUV. The results also show for the first time that kagome-PCF guides well in the VUV.
We present the use of linearly down-tapered gas-filled hollow-core photonic crystal fiber in a single-stage, pumped with pulses from a compact infrared laser source, to generate a supercontinuum carrying significant spectral power in the deep ultravi olet (200 - 300 nm). The generated supercontinuum extends from the near infrared down to around 213 nm with up to 0.83 mW/nm in the deep ultraviolet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا