ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological parameter constraints from SDSS luminous red galaxies: a new treatment of large-scale clustering

136   0   0.0 ( 0 )
 نشر من قبل Ariel G. Sanchez
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ariel G. Sanchez




اسأل ChatGPT حول البحث

We apply a new model for the spherically averaged correlation function at large pair separations to the measurement of the clustering of luminous red galaxies (LRGs) made from the SDSS by Cabre and Gaztanaga(2009). Our model takes into account the form of the BAO peak and the large scale shape of the correlation function. We perform a Monte Carlo Markov chain analysis for different combinations of datasets and for different parameter sets. When used in combination with a compilation of the latest CMB measurements, the LRG clustering and the latest supernovae results give constraints on cosmological parameters which are comparable and in remarkably good agreement, resolving the tension reported in some studies. The best fitting model in the context of a flat, Lambda-CDM cosmology is specified by Omega_m=0.261+-0.013, Omega_b=0.044+-0.001, n_s=0.96+-0.01, H_0=71.6+-1.2 km/s/Mpc and sigma_8=0.80+-0.02. If we allow the time-independent dark energy equation of state parameter to vary, we find results consistent with a cosmological constant at the 5% level using all data sets: w_DE=-0.97+-0.05. The large scale structure measurements by themselves can constrain the dark energy equation of state parameter to w_DE=-1.05+-0.15, independently of CMB or supernovae data. We do not find convincing evidence for an evolving equation of state. We provide a set of extended distance priors that contain the most relevant information from the CMB power spectrum and the shape of the LRG correlation function which can be used to constrain dark energy models and spatial curvature. Our model should provide an accurate description of the clustering even in much larger, forthcoming surveys, such as those planned with NASAs JDEM or ESAs Euclid mission.

قيم البحث

اقرأ أيضاً

A new determination of the sound horizon scale in angular coordinates is presented. It makes use of ~ 0.6 x 10^6 Luminous Red Galaxies, selected from the Sloan Digital Sky Survey imaging data, with photometric redshifts. The analysis covers a redshif t interval that goes from z=0.5 to z=0.6. We find evidence of the Baryon Acoustic Oscillations (BAO) signal at the ~ 2.3 sigma confidence level, with a value of theta_{BAO} (z=0.55) = (3.90 pm 0.38) degrees, including systematic errors. To our understanding, this is the first direct measurement of the angular BAO scale in the galaxy distribution, and it is in agreement with previous BAO measurements. We also show how radial determinations of the BAO scale can break the degeneracy in the measurement of cosmological parameters when they are combined with BAO angular measurements. The result is also in good agreement with the WMAP7 best-fit cosmology. We obtain a value of w_0 = -1.03 pm 0.16 for the equation of state parameter of the dark energy, Omega_M = 0.26 pm 0.04 for the matter density, when the other parameters are fixed. We have also tested the sensitivity of current BAO measurements to a time varying dark energy equation of state, finding w_a = 0.06 pm 0.22 if we fix all the other parameters to the WMAP7 best-fit cosmology.
We present the power spectrum of the reconstructed halo density field derived from a sample of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey Seventh Data Release (DR7). The halo power spectrum has a direct connection to the underlyin g dark matter power for k <= 0.2 h/Mpc, well into the quasi-linear regime. This enables us to use a factor of ~8 more modes in the cosmological analysis than an analysis with kmax = 0.1 h/Mpc, as was adopted in the SDSS team analysis of the DR4 LRG sample (Tegmark et al. 2006). The observed halo power spectrum for 0.02 < k < 0.2 h/Mpc is well-fit by our model: chi^2 = 39.6 for 40 degrees of freedom for the best fit LCDM model. We find Omega_m h^2 * (n_s/0.96)^0.13 = 0.141^{+0.009}_{-0.012} for a power law primordial power spectrum with spectral index n_s and Omega_b h^2 = 0.02265 fixed, consistent with CMB measurements. The halo power spectrum also constrains the ratio of the comoving sound horizon at the baryon-drag epoch to an effective distance to z=0.35: r_s/D_V(0.35) = 0.1097^{+0.0039}_{-0.0042}. Combining the halo power spectrum measurement with the WMAP 5 year results, for the flat LCDM model we find Omega_m = 0.289 +/- 0.019 and H_0 = 69.4 +/- 1.6 km/s/Mpc. Allowing for massive neutrinos in LCDM, we find sum m_{ u} < 0.62 eV at the 95% confidence level. If we instead consider the effective number of relativistic species Neff as a free parameter, we find Neff = 4.8^{+1.8}_{-1.7}. Combining also with the Kowalski et al. (2008) supernova sample, we find Omega_{tot} = 1.011 +/- 0.009 and w = -0.99 +/- 0.11 for an open cosmology with constant dark energy equation of state w.
252 - Ying Zu 2012
We derive constraints on the matter density Om and the amplitude of matter clustering sig8 from measurements of large scale weak lensing (projected separation R=5-30hmpc) by clusters in the Sloan Digital Sky Survey MaxBCG catalog. The weak lensing si gnal is proportional to the product of Om and the cluster-mass correlation function xicm. With the relation between optical richness and cluster mass constrained by the observed cluster number counts, the predicted lensing signal increases with increasing Om or sig8, with mild additional dependence on the assumed scatter between richness and mass. The dependence of the signal on scale and richness partly breaks the degeneracies among these parameters. We incorporate external priors on the richness-mass scatter from comparisons to X-ray data and on the shape of the matter power spectrum from galaxy clustering, and we test our adopted model for xicm against N-body simulations. Using a Bayesian approach with minimal restrictive priors, we find sig8(Om/0.325)^{0.501}=0.828 +/- 0.049, with marginalized constraints of Om=0.325_{-0.067}^{+0.086} and sig8=0.828_{-0.097}^{+0.111}, consistent with constraints from other MaxBCG studies that use weak lensing measurements on small scales (R<=2hmpc). The (Om,sig8) constraint is consistent with and orthogonal to the one inferred from WMAP CMB data, reflecting agreement with the structure growth predicted by GR for an LCDM cosmological model. A joint constraint assuming LCDM yields Om=0.298 +/- 0.020 and sig8=0.831 +/- 0.020. Our cosmological parameter errors are dominated by the statistical uncertainties of the large scale weak lensing measurements, which should shrink sharply with current and future imaging surveys.
Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy halos, independent of the details of how galaxies populate dark matter halos. This finding makes it possible to determine the dark matter clustering from measurements of galaxy-galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We generalise the approach of Baldauf et al. (2010) to remove small scale information (below 2 and 4 Mpc/h for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 sq. deg., containing 69150, 62150, and 35088 galaxies with mean redshifts of 0.11, 0.28, and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both sigma_8 and Omega_m (and marginalise over non-linear galaxy bias) in a flat LCDM model, the best-constrained quantity is sigma_8 (Omega_m/0.25)^{0.57}=0.80 +/- 0.05 (1-sigma, stat. + sys.), where statistical and systematic errors have comparable contributions, and we fixed n_s=0.96 and h=0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with WMAP7 CMB data, constraints on sigma_8, Omega_m, H_0, w_{de} and sum m_{ u} become 30--80 per cent tighter than with CMB data alone, since our data break several parameter degeneracies.
This is the first paper of a series where we study the clustering of LRG galaxies in the latest spectroscopic SDSS data release, DR6, which has 75000 LRG galaxies covering over 1 $Gpc^3/h^3$ at $0.15<z<0.47$. Here we focus on modeling redshift space distortions in $xips$, the 2-point correlation in separate line-of-sight and perpendicular directions, on large scales. % and away from the line-of-sight. We use large mock simulations to study the validity of models and errors. We show that errors in the data are dominated by a shot-noise term that is 40% larger than the Poisson error commonly used. We first use the normalized quadrupole for the whole sample (mean z=0.34) to estimate $beta=f(Omega_m)/b=0.34 pm 0.03$, where $f(Omega_m)$ is the linear velocity growth factor and $b$ is the linear bias parameter that relates galaxy to matter fluctuations on large scales. We next use the full $xips$ plane to find $Omega_{0m}= 0.245 pm 0.020$ (h=0.72) and the biased amplitude $b sigma_8 = 1.56 pm 0.09$. For standard gravity, we can combine these measurements to break degeneracies and find $sigma_8=0.85 pm 0.06$, $b=1.85 pm 0.25$ and $f(Omega_m)=0.64 pm 0.09$. We present constraints for modified theories of gravity and find that standard gravity is consistent with data as long as $0.80<sigma_8<0.92$. We also calculate the cross-correlation with WMAP5 and show how both methods to measure the growth history are complementary to constrain non-standard models of gravity. Finally, we show results for different redshift slices, including a prominent BAO peak in the monopole at different redshifts. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا