ترغب بنشر مسار تعليمي؟ اضغط هنا

Promoting superconductivity in FeSe films via fine manipulation of crystal lattice

307   0   0.0 ( 0 )
 نشر من قبل Kui Jin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stabilized FeSe thin films in ambient pressure with tunable superconductivity would be a promising candidate for superconducting electronic devices yet its superconducting transition temperature (Tc) is below 10 K in bulk materials. By carefully controlling the depositions on twelve kinds of substrates using pulsed laser deposition technique, high quality single crystalline FeSe samples were fabricated with full width of half maximum 0.515? in the rocking curve and clear four-fold symmetry in phi-scan from x-ray diractions. The films have a maximum Tc 15 K on the CaF2 substrate and do not show obvious decay in the air for more than half a year. Slightly tuning the stoichiometry of the FeSe targets, the Tc becomes adjustable from 15 to < 2 K with quite narrow transition widths less than 2 K, and shows a positive relation with the out-of-plane (c-axis) lattice parameter of the films. However, there is no clear relation between the Tc and the surface atomic distance of the substrates. By reducing the thickness of the films, the Tc decreases and fades away in samples of less than 10 nm, suggesting that the strain effect is not responsible for the enhancement of Tc in our experiments.

قيم البحث

اقرأ أيضاً

276 - Zhongpei Feng , Jie Yuan , Jun Li 2018
There is an ongoing debate about the relative importance of structural change versus doping charge carriers on the mechanism of superconductivity in Fe-based materials. Elucidating this issue is a major challenge since it would require a large number of samples where structure properties or the carrier density is systematically varied. FeSe, with its structural simplicity, is an ideal platform for addressing this question. It has been demonstrated that the superconductivity in this material can be controlled through crystal lattice tuning, as well as electronic structure manipulation. Here, we apply a high-throughput methodology to FeSe to systematically delineate the interdependence of its structural and electronic properties. Using a dual-beam pulsed laser deposition, we have generated FeSe films with a marked gradient in the superconducting transition temperature (below 2 K < Tc < 12 K) across 1 cm width of the films. The Tc gradient films display ~ 1% continuous stretch and compression in the out-of-plane and in-plane lattice constants respectively, triggering the continuous enhancement of superconductivity. Combining transport and angular-resolved photoemission measurements on uniform FeSe films with tunable Tc from 3 K to 14 K, we find that the electron carrier density is intimately correlated with Tc, i.e., it increases by a factor of 6 and ultimately surpasses the almost constant hole concentration. Our transmission electron microscope and band structure calculations reveal that rather than by shifting the chemical potential, the enhanced superconductivity is linked to the selective adjustment of the dxy band dispersion across the Fermi level by means of reduced local lattice distortions. Therefore, such novel mechanism provides a key to understand discrete superconducting phases in FeSe.
Charge transfer and electron-phonon coupling (EPC) are proposed to be two important constituents associated with enhanced superconductivity in the single unit cell FeSe films on oxide surfaces. Using high-resolution electron energy loss spectroscopy combined with first-principles calculations, we have explored the lattice dynamics of ultrathin FeSe films grown on SrTiO3. We show that, despite the significant effect from the substrate on the electronic structure and superconductivity of the system, the FeSe phonons in the films are unaffected. The energy dispersion and linewidth associated with the Fe- and Se-derived vibrational modes are thickness- and temperature-independent. Theoretical calculations indicate the crucial role of antiferromagnetic correlation in FeSe to reproduce the experimental phonon dispersion. Importantly, the only detectable change due to the growth of FeSe films is the broadening of the Fuchs-Kliewer (F-K) phonons associated with the lattice vibrations of SrTiO$_3$(001) substrate. If EPC plays any role in the enhancement of film superconductivity, it must be the interfacial coupling between the electrons in FeSe film and the F-K phonons from substrate rather than the phonons of FeSe.
Single-layer FeSe films grown on the SrTiO3 substrate (FeSe/STO) have attracted much attention because of their possible record-high superconducting critical temperature Tc and distinct electronic structures in iron-based superconductors. However, it has been under debate on how high its Tc can really reach due to the inconsistency of the results obtained from the transport, magnetic and spectroscopic measurements. Here we report spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/STO films. By preparing high-quality single-layer FeSe/STO films, we observe for the first time strong superconductivity-induced Bogoliubov back-bending bands that extend to rather high binding energy ~100 meV by high-resolution angle-resolved photoemission measurements. The Bogoliubov back-bending band provides a new definitive benchmark of superconductivity pairing that is directly observed up to 83 K in the single-layer FeSe/STO films. Moreover, we find that the superconductivity pairing state can be further divided into two temperature regions of 64-83 K and below 64 K. We propose the 64-83 K region may be attributed to superconductivity fluctuation while the region below 64 K corresponds to the realization of long-range superconducting phase coherence. These results indicate that either Tc as high as 83 K is achievable in iron-based superconductors, or there is a pseudogap formation from superconductivity fluctuation in single-layer FeSe/STO films.
176 - Xu Liu , Defa Liu , Wenhao Zhang 2014
The latest discovery of possible high temperature superconductivity in the single-layer FeSe film grown on a SrTiO3 substrate, together with the observation of its unique electronic structure and nodeless superconducting gap, has generated much atten tion. Initial work also found that, while the single-layer FeSe/SrTiO3 film exhibits a clear signature of superconductivity, the double-layer FeSe/SrTiO3 film shows an insulating behavior. Such a dramatic difference between the single-layer and double-layer FeSe/SrTiO3 films is surprising and the underlying origin remains unclear. Here we report our comparative study between the single-layer and double-layer FeSe/SrTiO3 films by performing a systematic angle-resolved photoemission study on the samples annealed in vacuum. We find that, like the single-layer FeSe/SrTiO3 film, the as-prepared double-layer FeSe/SrTiO3 film is insulating and possibly magnetic, thus establishing a universal existence of the magnetic phase in the FeSe/SrTiO3 films. In particular, the double-layer FeSe/SrTiO3 film shows a quite different doping behavior from the single-layer film in that it is hard to get doped and remains in the insulating state under an extensive annealing condition. The difference originates from the much reduced doping efficiency in the bottom FeSe layer of the double-layer FeSe/SrTiO3 film from the FeSe-SrTiO3 interface. These observations provide key insights in understanding the origin of superconductivity and the doping mechanism in the FeSe/SrTiO3 films. The property disparity between the single-layer and double-layer FeSe/SrTiO3 films may facilitate to fabricate electronic devices by making superconducting and insulating components on the same substrate under the same condition.
The mechanism of high temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure, in particular the Fermi surface topology, is considered to play an essential rol e in dictating the superconductivity. Recent revelation of distinct electronic structure and possible high temperature superconductivity with a transition temperature Tc above 65 K in the single-layer FeSe films grown on the SrTiO3 substrate provides key information on the roles of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high resolution angle-resolved photoemission measurement on the electronic structure and superconducting gap of a novel FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviors to that of the superconducting single-layer FeSe/SrTiO3 film in terms of Fermi surface topology, band structure and nearly isotropic superconducting gap without nodes. These observations provide significant insights in understanding high temperature superconductivity in the single-layer FeSe/SrTiO3 film in particular, and the mechanism of superconductivity in the iron-based superconductors in general.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا