ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced superconductivity and evidence for novel pairing in single-layer FeSe on SrTiO3 thin film under large tensile strain

197   0   0.0 ( 0 )
 نشر من قبل Donglai Feng
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single-layer FeSe films with extremely expanded in-plane lattice constant of 3.99A are fabricated by epitaxially growing FeSe/Nb:SrTiO3/KTaO3 heterostructures, and studied by in situ angle-resolved photoemission spectroscopy. Two elliptical electron pockets at the Brillion zone corner are resolved with negligible hybridization between them, indicating the symmetry of the low energy electronic structure remains intact as a free-standing single-layer FeSe, although it is on a substrate. The superconducting gap closes at a record high temperature of 70K for the iron based superconductors. Intriguingly, the superconducting gap distribution is anisotropic but nodeless around the electron pockets, with minima at the crossings of the two pockets. Our results put strong constraints on the current theories, and support the coexistence of both even and odd parity spin-singlet pairing channels as classified by the lattice symmetry.

قيم البحث

اقرأ أيضاً

Single-layer FeSe films grown on the SrTiO3 substrate (FeSe/STO) have attracted much attention because of their possible record-high superconducting critical temperature Tc and distinct electronic structures in iron-based superconductors. However, it has been under debate on how high its Tc can really reach due to the inconsistency of the results obtained from the transport, magnetic and spectroscopic measurements. Here we report spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/STO films. By preparing high-quality single-layer FeSe/STO films, we observe for the first time strong superconductivity-induced Bogoliubov back-bending bands that extend to rather high binding energy ~100 meV by high-resolution angle-resolved photoemission measurements. The Bogoliubov back-bending band provides a new definitive benchmark of superconductivity pairing that is directly observed up to 83 K in the single-layer FeSe/STO films. Moreover, we find that the superconductivity pairing state can be further divided into two temperature regions of 64-83 K and below 64 K. We propose the 64-83 K region may be attributed to superconductivity fluctuation while the region below 64 K corresponds to the realization of long-range superconducting phase coherence. These results indicate that either Tc as high as 83 K is achievable in iron-based superconductors, or there is a pseudogap formation from superconductivity fluctuation in single-layer FeSe/STO films.
174 - Xu Liu , Defa Liu , Wenhao Zhang 2014
The latest discovery of possible high temperature superconductivity in the single-layer FeSe film grown on a SrTiO3 substrate, together with the observation of its unique electronic structure and nodeless superconducting gap, has generated much atten tion. Initial work also found that, while the single-layer FeSe/SrTiO3 film exhibits a clear signature of superconductivity, the double-layer FeSe/SrTiO3 film shows an insulating behavior. Such a dramatic difference between the single-layer and double-layer FeSe/SrTiO3 films is surprising and the underlying origin remains unclear. Here we report our comparative study between the single-layer and double-layer FeSe/SrTiO3 films by performing a systematic angle-resolved photoemission study on the samples annealed in vacuum. We find that, like the single-layer FeSe/SrTiO3 film, the as-prepared double-layer FeSe/SrTiO3 film is insulating and possibly magnetic, thus establishing a universal existence of the magnetic phase in the FeSe/SrTiO3 films. In particular, the double-layer FeSe/SrTiO3 film shows a quite different doping behavior from the single-layer film in that it is hard to get doped and remains in the insulating state under an extensive annealing condition. The difference originates from the much reduced doping efficiency in the bottom FeSe layer of the double-layer FeSe/SrTiO3 film from the FeSe-SrTiO3 interface. These observations provide key insights in understanding the origin of superconductivity and the doping mechanism in the FeSe/SrTiO3 films. The property disparity between the single-layer and double-layer FeSe/SrTiO3 films may facilitate to fabricate electronic devices by making superconducting and insulating components on the same substrate under the same condition.
253 - Junfeng He , Xu Liu , Wenhao Zhang 2014
In high temperature cuprate superconductors, it is now generally agreed that the parent compound is a Mott insulator and superconductivity is realized by doping the antiferromagnetic Mott insulator. In the iron-based superconductors, however, the par ent compound is mostly antiferromagnetic metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. It has been proposed theoretically that the parent compound of the iron-based superconductors may be on the verge of a Mott insulator, but so far no clear experimental evidence of doping-induced Mott transition has been available. Here we report an electronic evidence of an insulator-superconductor transition observed in the single-layer FeSe films grown on the SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with the increasing doping. This observation represents the first example of an insulator-superconductor transition via doping observed in the iron-based superconductors. It indicates that the parent compound of the iron-based superconductors is in proximity of a Mott insulator and strong electron correlation should be considered in describing the iron-based superconductors.
The mechanism of high temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure, in particular the Fermi surface topology, is considered to play an essential rol e in dictating the superconductivity. Recent revelation of distinct electronic structure and possible high temperature superconductivity with a transition temperature Tc above 65 K in the single-layer FeSe films grown on the SrTiO3 substrate provides key information on the roles of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high resolution angle-resolved photoemission measurement on the electronic structure and superconducting gap of a novel FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviors to that of the superconducting single-layer FeSe/SrTiO3 film in terms of Fermi surface topology, band structure and nearly isotropic superconducting gap without nodes. These observations provide significant insights in understanding high temperature superconductivity in the single-layer FeSe/SrTiO3 film in particular, and the mechanism of superconductivity in the iron-based superconductors in general.
Strain is a powerful experimental tool to explore new electronic states and understand unconventional superconductivity. Here, we investigate the effect of uniaxial strain on the nematic and superconducting phase of single crystal FeSe using magnetot ransport measurements. We find that the resistivity response to the strain is strongly temperature dependent and it correlates with the sign change in the Hall coefficient being driven by scattering, coupling with the lattice and multiband phenomena. Band structure calculations suggest that under strain the electron pockets develop a large in-plane anisotropy as compared with the hole pocket. Magnetotransport studies at low temperatures indicate that the mobility of the dominant carriers increases with tensile strain. Close to the critical temperature, all resistivity curves at constant strain cross in a single point, indicating a universal critical exponent linked to a strain-induced phase transition. Our results indicate that the superconducting state is enhanced under compressive strain and suppressed under tensile strain, in agreement with the trends observed in FeSe thin films and overdoped pnictides, whereas the nematic phase seems to be affected in the opposite way by the uniaxial strain. By comparing the enhanced superconductivity under strain of different systems, our results suggest that strain on its own cannot account for the enhanced high $T_c$ superconductivity of FeSe systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا