ترغب بنشر مسار تعليمي؟ اضغط هنا

Black Holes Without Coordinates

150   0   0.0 ( 0 )
 نشر من قبل Orlando Alvarez
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Orlando Alvarez




اسأل ChatGPT حول البحث

These lectures describe how to study the geometry of some black holes without the use of coordinates.



قيم البحث

اقرأ أيضاً

The postulates of black hole complementarity do not imply a firewall for infalling observers at a black hole horizon. The dynamics of the stretched horizon, that scrambles and re-emits information, determines whether infalling observers experience an ything out of the ordinary when entering a large black hole. In particular, there is no firewall if the stretched horizon degrees of freedom retain information for a time of order the black hole scrambling time.
117 - M. Cvetic , C.N. Pope , A. Saha 2020
Motivated by the study of conserved Aretakis charges for a scalar field on the horizon of an extremal black hole, we construct the metrics for certain classes of four-dimensional and five-dimensional extremal rotating black holes in Gaussian null coo rdinates. We obtain these as expansions in powers of the radial coordinate, up to sufficient order to be able to compute the Aretakis charges. The metrics we consider are for 4-charge black holes in four-dimensional STU supergravity (including the Kerr-Newman black hole in the equal-charge case) and the general 3-charge black holes in five-dimensional STU supergravity. We also investigate the circumstances under which the Aretakis charges of an extremal black hole can be mapped by conformal inversion of the metric into Newman-Penrose charges at null infinity. We show that while this works for four-dimensional static black holes, a simple radial inversion fails in rotating cases because a necessary conformal symmetry of the massless scalar equation breaks down. We also discuss that a massless scalar field in dimensions higher than four does not have any conserved Newman-Penrose charge, even in a static asymptotically flat spacetime.
We present a class of new black hole solutions in $D$-dimensional Lovelock gravity theory. The solutions have a form of direct product $mathcal{M}^m times mathcal{H}^{n}$, where $D=m+n$, $mathcal{H}^n$ is a negative constant curvature space, and are characterized by two integration constants. When $m=3$ and 4, these solutions reduce to the exact black hole solutions recently found by Maeda and Dadhich in Gauss-Bonnet gravity theory. We study thermodynamics of these black hole solutions. Although these black holes have a nonvanishing Hawking temperature, surprisingly, the mass of these solutions always vanishes. While the entropy also vanishes when $m$ is odd, it is a constant determined by Euler characteristic of $(m-2)$-dimensional cross section of black hole horizon when $m$ is even. We argue that the constant in the entropy should be thrown away. Namely, when $m$ is even, the entropy of these black holes also should vanish. We discuss the implications of these results.
To perform realistic tests of theories of gravity, we need to be able to look beyond general relativity and evaluate the consistency of alternative theories with observational data from, especially, gravitational wave detections using, for example, a n agnostic Bayesian approach. In this paper we further examine properties of one class of such viable, alternative theories, based on metrics arising from ungauged supergravity. In particular, we examine the massless, neutral, minimally coupled scalar wave equation in a general stationary, axisymmetric background metric such as that of a charged rotating black hole, when the scalar field is either time independent or in the low-frequency, near-zone limit, with a view to calculating the Love numbers of tidal perturbations, and of obtaining harmonic coordinates for the background metric. For a four-parameter family of charged asymptotically flat rotating black hole solutions of ungauged supergravity theory known as STU black holes, which includes Kaluza-Klein black holes and the Kerr-Sen black hole as special cases, we find that all time-independent solutions, and hence the harmonic coordinates of the metrics, are identical to those of the Kerr solution. In the low-frequency limit we find the scalar fields exhibit the same $SL(2,R)$ symmetry as holds in the case of the Kerr solution. We point out extensions of our results to a wider class of metrics, which includes solutions of Einstein-Maxwell-Dilaton theory.
We propose a correspondence between an Anyon Van der Waals fluid and a (2+1) dimensional AdS black hole. Anyons are particles with intermediate statistics that interpolates between a Fermi-Dirac statistics and a Bose-Einstein one. A parameter $alpha$ ($0<alpha<1$) characterizes this intermediate statistics of Anyons. The equation of state for the Anyon Van der Waals fluid shows that it has a quasi Fermi-Dirac statistics for $alpha > alpha_c$, but a quasi Bose-Einstein statistics for $alpha< alpha_c$. By defining a general form of the metric for the (2+1) dimensional AdS black hole and considering the temperature of the black hole to be equal with that of the Anyon Van der Waals fluid, we construct the exact form of the metric for a (2+1) dimensional AdS black hole. The thermodynamic properties of this black hole is consistent with those of the Anyon Van der Waals fluid. For $alpha< alpha_c$, the solution exhibits a quasi Bose-Einstein statistics. For $alpha > alpha_c$ and a range of values of the cosmological constant, there is, however, no event horizon so there is no black hole solution. Thus, for these values of cosmological constants, the AdS Anyon Van der Waals black holes have only quasi Bose-Einstein statistics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا