ترغب بنشر مسار تعليمي؟ اضغط هنا

Black Holes without Mass and Entropy in Lovelock Gravity

134   0   0.0 ( 0 )
 نشر من قبل Li-Ming Cao
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a class of new black hole solutions in $D$-dimensional Lovelock gravity theory. The solutions have a form of direct product $mathcal{M}^m times mathcal{H}^{n}$, where $D=m+n$, $mathcal{H}^n$ is a negative constant curvature space, and are characterized by two integration constants. When $m=3$ and 4, these solutions reduce to the exact black hole solutions recently found by Maeda and Dadhich in Gauss-Bonnet gravity theory. We study thermodynamics of these black hole solutions. Although these black holes have a nonvanishing Hawking temperature, surprisingly, the mass of these solutions always vanishes. While the entropy also vanishes when $m$ is odd, it is a constant determined by Euler characteristic of $(m-2)$-dimensional cross section of black hole horizon when $m$ is even. We argue that the constant in the entropy should be thrown away. Namely, when $m$ is even, the entropy of these black holes also should vanish. We discuss the implications of these results.



قيم البحث

اقرأ أيضاً

We present a class of exact analytic and static, spherically symmetric black hole solutions in the semi-classical Einstein equations with Weyl anomaly. The solutions have two branches, one is asymptotically flat and the other asymptotically de Sitter . We study thermodynamic properties of the black hole solutions and find that there exists a logarithmic correction to the well-known Bekenstein-Hawking area entropy. The logarithmic term might come from non-local terms in the effective action of gravity theories. The appearance of the logarithmic term in the gravity side is quite important in the sense that with this term one is able to compare black hole entropy up to the subleading order, in the gravity side and in the microscopic statistical interpretation side.
The postulates of black hole complementarity do not imply a firewall for infalling observers at a black hole horizon. The dynamics of the stretched horizon, that scrambles and re-emits information, determines whether infalling observers experience an ything out of the ordinary when entering a large black hole. In particular, there is no firewall if the stretched horizon degrees of freedom retain information for a time of order the black hole scrambling time.
We propose an entropy current for dynamical black holes in a theory with arbitrary four derivative corrections to Einsteins gravity, linearized around a stationary black hole. The Einstein-Gauss-Bonnet theory is a special case of the class of theorie s that we consider. Within our approximation, our construction allows us to write down a completely local version of the second law of black hole thermodynamics, in the presence of the higher derivative corrections considered here. This ultra-local, stronger form of the second law is a generalization of a weaker form, applicable to the total entropy, integrated over a compact `time-slice of the horizon, a proof of which has been recently presented in arXiv:1504.08040. We also provide a general algorithm to construct the entropy current for the four derivative theories, which may be straightforwardly generalized to arbitrary higher derivative corrections to Einsteins gravity. This algorithm highlights the possible ambiguities in defining the entropy current.
It is well known that the Reissner-Norstrom solution of Einstein-Maxwell theory cannot be cylindrically extended to higher dimension, as with the black hole solutions in vacuum. In this paper we show that this result is circumvented in Lovelock gravi ty. We prove that the theory containing only the quadratic Lovelock term, the Gauss-Bonnet term, minimally coupled to a $U(1)$ field, admits homogeneous black string and black brane solutions characterized by the mass, charge and volume of the flat directions. We also show that theories containing a single Lovelock term of order $n$ in the Lagrangian coupled to a $(p-1)$-form field admit simple oxidations only when $n$ equals $p$, giving rise to new, exact, charged black branes in higher curvature gravity. For General Relativity this stands for a Lagrangian containing the Einstein-Hilbert term coupled to a massless scalar field, and no-hair theorems in this case forbid the existence of black branes. In all these cases the field equations acquire an invariance under a global scaling scale transformation of the metric. As explicit examples we construct new magnetically charged black branes for cubic Lovelock theory coupled to a Kalb-Ramond field in dimensions $(3m+2)+q$, with $m$ and $q$ integers, and the latter denoting the number of extended flat directions. We also construct dyonic solutions in quartic Lovelock theory in dimension $(4m+2)+q$.
195 - A. Ulacia Rey 2011
Using the Sens mechanism we calculate the entropy for an $AdS_{2}times S^{d-2}$ extremal and static black hole in four dimensions, with higher derivative terms that comes from a three parameter non-minimal Einstein-Maxwell theory. The explicit result s for Gauss-Bonnet in the gauge-gravity sector are shown.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا