ﻻ يوجد ملخص باللغة العربية
Direct modeling of porous materials under shock is a complex issue. We investigate such a system via the newly developed material-point method. The effects of shock strength and porosity size are the main concerns. For the same porosity, the effects of mean-void-size are checked. It is found that, local turbulence mixing and volume dissipation are two important mechanisms for transformation of kinetic energy to heat. When the porosity is very small, the shocked portion may arrive at a dynamical steady state; the voids in the downstream portion reflect back rarefactive waves and result in slight oscillations of mean density and pressure; for the same value of porosity, a larger mean-void-size makes a higher mean temperature. When the porosity becomes large, hydrodynamic quantities vary with time during the whole shock-loading procedure: after the initial stage, the mean density and pressure decrease, but the temperature increases with a higher rate. The distributions of local density, pressure, temperature and particle-velocity are generally non-Gaussian and vary with time. The changing rates depend on the porosity value, mean-void-size and shock strength. The stronger the loaded shock, the stronger the porosity effects. This work provides a supplement to experiments for the very quick procedures and reveals more fundamental mechanisms in energy and momentum transportation.
Morphological measures are introduced to probe the complex procedure of shock wave reaction on porous material. They characterize the geometry and topology of the pixelized map of a state variable like the temperature. Relevance of them to thermodyna
The collapse of cavities under shock is a key problem in various fields ranging from erosion of material, ignition of explosive, to sonoluminescence, etc. We study such processes using the material-point-method developed recently in the field of soli
Shock wave reaction results in various characteristic regimes in porous material. The geometrical and topological properties of these regimes are highly concerned in practical applications. Via the morphological analysis to characteristic regimes wit
By means of ab initio calculations we investigate the possibility of existence of a boron nitride (BN) porous two-dimensional nanosheet which is geometrically similar to the carbon allotrope known as biphenylene carbon. The proposed structure, which
The Hugoniot curves for shock-compressed molybdenum with initial porosities of 1.0, 1.26, 1.83, and 2.31 are theoretically investigated. The method of calculations combines the first-principles treatment for zero- and finite-temperature electronic co