ترغب بنشر مسار تعليمي؟ اضغط هنا

Equation of state for shock-compressed porous molybdenum from first-principles mean-field potential calculations

151   0   0.0 ( 0 )
 نشر من قبل Ping Zhang
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Hugoniot curves for shock-compressed molybdenum with initial porosities of 1.0, 1.26, 1.83, and 2.31 are theoretically investigated. The method of calculations combines the first-principles treatment for zero- and finite-temperature electronic contribution and the mean-field-potential approach for the ion-thermal contribution to the total free energy. Our calculated results reproduce the Hugoniot properties of porous molybdenum quite well. At low porosity, in particular, the calculations show a complete agreement with the experimental measurements over the full range of data. For the two large porosity values of 1.83 and 2.31, our results are well in accord with the experimental data points up to the particle velocity of 3.5 km/s, and tend to overestimate the shock-wave velocity and Hugoniot pressure when further increasing the particle velocity. In addition, the temperature along the principal Hugoniot is also extensively investigated for porous molybdenum.



قيم البحث

اقرأ أيضاً

We have given a summary on our theoretical predictions of three kinds of topological semimetals (TSMs), namely, Dirac semimetal (DSM), Weyl semimetal (WSM) and Node-Line Semimetal (NLSM). TSMs are new states of quantum matters, which are different wi th topological insulators. They are characterized by the topological stability of Fermi surface, whether it encloses band crossing point, i.e., Dirac cone like energy node, or not. They are distinguished from each other by the degeneracy and momentum space distribution of the nodal points. To realize these intriguing topological quantum states is quite challenging and crucial to both fundamental science and future application. In 2012 and 2013, Na$_3$Bi and Cd$_3$As$_2$ were theoretically predicted to be DSM, respectively. Their experimental verifications in 2014 have ignited the hot and intensive studies on TSMs. The following theoretical prediction of nonmagnetic WSM in TaAs family stimulated a second wave and many experimental works have come out in this year. In 2014, a kind of three dimensional crystal of carbon has been proposed to be NLSM due to negligible spin-orbit coupling and coexistence of time-reversal and inversion symmetry. Though the final experimental confirmation of NLSM is still missing, there have been several theoretical proposals, including Cu$_3$PdN from us. In the final part, we have summarized the whole family of TSMs and their relationship.
We present calculations for electronic and magnetic properties of surface states confined by a circular quantum corral built of magnetic adatoms (Fe) on a Cu(111) surface. We show the oscillations of charge and magnetization densities within the corr al and the possibility of the appearance of spin--polarized states. In order to classify the peaks in the calculated density of states with orbital quantum numbers we analyzed the problem in terms of a simple quantum mechanical circular well model. This model is also used to estimate the behaviour of the magnetization and energy with respect to the radius of the circular corral. The calculations are performed fully relativistically using the embedding technique within the Korringa-Kohn-Rostoker method.
The predictive simulation of molecular liquids requires models that are not only accurate, but computationally efficient enough to handle the large systems and long time scales required for reliable prediction of macroscopic properties. We present a new approach to the systematic approximation of the first-principles potential energy surface (PES) of molecular liquids using the GAP (Gaussian Approximation Potential) framework. The approach allows us to create potentials at several different levels of accuracy in reproducing the true PES, which allows us to test the level of quantum chemistry that is necessary to accurately predict its macroscopic properties. We test the approach by building potentials for liquid methane (CH$_4$), which is difficult to model from first principles because its behavior is dominated by weak dispersion interactions with a significant many-body component. We find that an accurate, consistent prediction of its bulk density across a wide range of temperature and pressure requires not only many-body dispersion, but also quantum nuclear effects to be modeled accurately.
The bulk photovoltaic effect (BPVE) refers to current generation due to illumination by light in a homogeneous bulk material lacking inversion symmetry. In addition to the intensively studied shift current, the ballistic current, which originates fro m asymmetric carrier generation due to scattering processes, also constitutes an important contribution to the overall kinetic model of the BPVE. In this letter, we use a perturbative approach to derive a formula for the ballistic current resulting from the intrinsic electron-phonon scattering in a form amenable to first-principles calculation. We then implement the theory and calculate the ballistic current of the prototypical BPVE material ch{BaTiO3} using quantum-mechanical density functional theory. The magnitude of the ballistic current is comparable to that of shift current, and the total spectrum (shift plus ballistic) agrees well with the experimentally measured photocurrents. Furthermore, we show that the ballistic current is sensitive to structural change, which could benefit future photovoltaic materials design.
117 - G. Kotliar , S.Y. Savrasov 2002
We review the basic ideas of the dynamical mean field theory (DMFT) and some of the insights into the electronic structure of strongly correlated electrons obtained by this method in the context of model Hamiltonians. We then discuss the perspectives for carrying out more realistic DMFT studies of strongly correlated electron systems and we compare it with existent methods, LDA and LDA+U. We stress the existence of new functionals for electronic structure calculations which allow us to treat situations where the single--particle description breaks down such as the vicinity of the Mott transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا