ﻻ يوجد ملخص باللغة العربية
We analyze the cross-correlation of 2,705 unambiguously intervening Mg II (2796,2803A) quasar absorption line systems with 1,495,604 luminous red galaxies (LRGs) from the Fifth Data Release of the Sloan Digital Sky Survey within the redshift range 0.36<=z<=0.8. We confirm with high precision a previously reported weak anti-correlation of equivalent width and dark matter halo mass, measuring the average masses to be log M_h(M_[solar]h^-1)=11.29 [+0.36,-0.62] and log M_h(M_[solar]h^-1)=12.70 [+0.53,-1.16] for systems with W[2796A]>=1.4A and 0.8A<=W[2796A]<1.4A, respectively. Additionally, we investigate the significance of a number of potential sources of bias inherent in absorber-LRG cross-correlation measurements, including absorber velocity distributions and the weak lensing of background quasars, which we determine is capable of producing a 20-30% bias in angular cross-correlation measurements on scales less than 2. We measure the Mg II - LRG cross-correlation for 719 absorption systems with v<60,000 km s^-1 in the quasar rest frame and find that these associated absorbers typically reside in dark matter haloes that are ~10-100 times more massive than those hosting unambiguously intervening Mg II absorbers. Furthermore, we find evidence for evolution of the redshift number density, dN/dz, with 2-sigma significance for the strongest (W>2.0A) absorbers in the DR5 sample. This width-dependent dN/dz evolution does not significantly affect the recovered equivalent width-halo mass anti-correlation and adds to existing evidence that the strongest Mg II absorption systems are correlated with an evolving population of field galaxies at z<0.8, while the non-evolving dN/dz of the weakest absorbers more closely resembles that of the LRG population.
We present a generic and fully-automatic method aimed at detecting absorption lines in the spectra of astronomical objects. The algorithm estimates the source continuum flux using a dimensionality reduction technique, nonnegative matrix factorization
We investigate the clustering properties of ~1550 broad-line active galactic nuclei (AGNs) at <z>=0.25 detected in the ROSAT All-Sky Survey (RASS) through their measured cross-correlation function with ~46,000 Luminous Red Galaxies (LRGs) in the Sloa
We present the results of a MgII absorption-line survey using QSO spectra from the SDSS EDR. Over 1,300 doublets with rest equivalent widths greater than 0.3AA and redshifts $0.366 le z le 2.269$ were identified and measured. We find that the $lambda
We analyse the large-scale angular correlation function (ACF) of the CMASS luminous galaxies (LGs), a photometric-redshift catalogue based on the Data Release 8 (DR8) of the Sloan Digital Sky Survey-III. This catalogue contains over $600 , , 000$ LGs
We apply a new model for the spherically averaged correlation function at large pair separations to the measurement of the clustering of luminous red galaxies (LRGs) made from the SDSS by Cabre and Gaztanaga(2009). Our model takes into account the fo