ترغب بنشر مسار تعليمي؟ اضغط هنا

The Spatial Clustering of ROSAT All-Sky Survey AGN: I. The cross-correlation function with SDSS Luminous Red Galaxies

154   0   0.0 ( 0 )
 نشر من قبل Mirko Krumpe
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the clustering properties of ~1550 broad-line active galactic nuclei (AGNs) at <z>=0.25 detected in the ROSAT All-Sky Survey (RASS) through their measured cross-correlation function with ~46,000 Luminous Red Galaxies (LRGs) in the Sloan Digital Sky Survey. By measuring the cross-correlation of our AGN sample with a larger tracer set of LRGs, we both minimize shot noise errors due to the relatively small AGN sample size and avoid systematic errors due to the spatially varying Galactic absorption that would affect direct measurements of the auto-correlation function (ACF) of the AGN sample. The measured ACF correlation length for the total RASS-AGN sample (<L_(0.1-2.4 keV)>=1.5 x 10^(44) erg/s) is r_0=4.3^{+0.4}_{-0.5} h^(-1) Mpc and the slope gamma=1.7^{+0.1}_{-0.1}. Splitting the sample into low and high L_X samples at L_(0.5-10 keV)=10^(44) erg/s, we detect an X-ray luminosity dependence of the clustering amplitude at the ~2.5 sigma level. The low L_X sample has r_0=3.3^{+0.6}_{-0.8} h^(-1) Mpc (gamma=1.7^{+0.4}_{-0.3}), which is similar to the correlation length of blue star-forming galaxies at low redshift. The high L_X sample has r_0=5.4^{+0.7}_{-1.0} h^(-1) Mpc (gamma=1.9^{+0.2}_{-0.2}), which is consistent with the clustering of red galaxies. From the observed clustering amplitude, we infer that the typical dark matter halo (DMH) mass harboring RASS-AGN with broad optical emission lines is log (M_DMH/(h^(-1) M_SUN)) =12.6^{+0.2}_{-0.3}, 11.8^{+0.6}_{-infty}, 13.1^{+0.2}_{-0.4} for the total, low L_X, and high L_X RASS-AGN samples, respectively.



قيم البحث

اقرأ أيضاً

437 - Takamitsu Miyaji 2010
This is the second paper of a series that reports on our investigation of the clustering properties of AGNs in the ROSAT All-Sky Survey (RASS) through cross-correlation functions (CCFs) with Sloan Digital Sky Survey (SDSS) galaxies. In this paper, we apply the Halo Occupation Distribution (HOD) model to the CCFs between the RASS Broad-line AGNs with SDSS Luminous Red Galaxies (LRGs) in the redshift range 0.16<z<0.36 that was calculated in paper I. In our HOD modeling approach, we use the known HOD of LRGs and constrain the HOD of the AGNs by a model fit to the CCF. For the first time, we are able to go beyond quoting merely a `typical AGN host halo mass, M_h, and model the full distribution function of AGN host dark matter halos. In addition, we are able to determine the large-scale bias and the mean M_h more accurately. We explore the behavior of three simple HOD models. Our first model (Model A) is a truncated power-law HOD model in which all AGNs are satellites. With this model, we find an upper limit to the slope (alpha) of the AGN HOD that is far below unity. The other two models have a central component, which has a step function form, where the HOD is constant above a minimum mass, without (Model B) or with (Model C) an upper mass cutoff, in addition to the truncated power-law satellite component, similar to the HOD that is found for galaxies. In these two models we find the upper limits of alpha < 0.95 and alpha < 0.84 for Model B and C respectively. Our analysis suggests that the satellite AGN occupation increases slower than, or may even decrease with, M_h, in contrast to the satellites HODs of luminosity-threshold samples of galaxies, which, in contrast, grow approximately as propto M_h^alpha with alphaapprox 1. These results are consistent with observations that the AGN fraction in groups and clusters decreases with richness.
This is the third paper in a series that reports on our investigation of the clustering properties of AGNs identified in the ROSAT All-Sky Survey (RASS) and Sloan Digital Sky Survey (SDSS). In this paper, we extend the redshift range to 0.07<z<0.50 a nd measure the clustering amplitudes of both X-ray and optically-selected SDSS broad-line AGNs with and without radio detections as well as for X-ray selected narrow-line RASS/SDSS AGNs. We measure the clustering amplitude through cross-correlation functions (CCFs) with SDSS galaxies and derive the bias by applying a halo occupation distribution (HOD) model directly to the CCFs. We find no statistically convincing difference in the clustering of X-ray and optically-selected broad-line AGNs, as well as with samples in which radio-detected AGNs are excluded. This is in contrast to low redshift optically-selected narrow-line AGNs, where radio-loud AGNs are found in more massive halos than optical AGNs without a radio-detection. The typical dark matter halo masses of our broad-line AGNs are log M_DMH/[h^(-1) M_SUN] ~ 12.4-13.4, consistent with the halo mass range of typical non-AGN galaxies at low redshifts. We find no significant difference between the clustering of X-ray selected narrow-line AGNs and broad-line AGNs. We confirm the weak dependence of the clustering strength on AGN X-ray luminosity at a ~2 sigma level. Finally, we summarize the current picture of AGN clustering to z~1.5 based on three dimensional clustering measurements.
X-ray surveys facilitate investigations of the environment of AGNs. Deep Chandra observations revealed that the AGNs source surface density rises near clusters of galaxies. The natural extension of these works is the measurement of spatial clustering of AGNs around clusters and the investigation of relative biasing between active galactic nuclei and galaxies near clusters. The major aims of this work are to obtain a measurement of the correlation length of AGNs around clusters and a measure of the averaged clustering properties of a complete sample of AGNs in dense environments. We present the first measurement of the soft X-ray cluster-AGN cross-correlation function in redshift space using the data of the ROSAT-NEP survey. The survey covers 9x9 deg^2 around the North Ecliptic Pole where 442 X-ray sources were detected and almost completely spectroscopically identified. We detected a > 3 sigma significant clustering signal on scales s<50 h_70^-1 Mpc. We performed a classical maximum-likelihood power-law fit to the data and obtained a correlation length s_0=8.7^+1.2_-0.3 h70^-1 Mpc and a slope gamma=1.7^+0.2_-0.7 (1 sigma errors). This is a strong evidence that AGNs are good tracers of the large scale structure of the Universe. Our data were compared to the results obtained by cross-correlating X-ray clusters and galaxies. We observe, with a large uncertainty, a similar behaviour of the AGNs clustering around clusters similar to the clustering of galaxies around clusters.
We present the power spectrum of the reconstructed halo density field derived from a sample of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey Seventh Data Release (DR7). The halo power spectrum has a direct connection to the underlyin g dark matter power for k <= 0.2 h/Mpc, well into the quasi-linear regime. This enables us to use a factor of ~8 more modes in the cosmological analysis than an analysis with kmax = 0.1 h/Mpc, as was adopted in the SDSS team analysis of the DR4 LRG sample (Tegmark et al. 2006). The observed halo power spectrum for 0.02 < k < 0.2 h/Mpc is well-fit by our model: chi^2 = 39.6 for 40 degrees of freedom for the best fit LCDM model. We find Omega_m h^2 * (n_s/0.96)^0.13 = 0.141^{+0.009}_{-0.012} for a power law primordial power spectrum with spectral index n_s and Omega_b h^2 = 0.02265 fixed, consistent with CMB measurements. The halo power spectrum also constrains the ratio of the comoving sound horizon at the baryon-drag epoch to an effective distance to z=0.35: r_s/D_V(0.35) = 0.1097^{+0.0039}_{-0.0042}. Combining the halo power spectrum measurement with the WMAP 5 year results, for the flat LCDM model we find Omega_m = 0.289 +/- 0.019 and H_0 = 69.4 +/- 1.6 km/s/Mpc. Allowing for massive neutrinos in LCDM, we find sum m_{ u} < 0.62 eV at the 95% confidence level. If we instead consider the effective number of relativistic species Neff as a free parameter, we find Neff = 4.8^{+1.8}_{-1.7}. Combining also with the Kowalski et al. (2008) supernova sample, we find Omega_{tot} = 1.011 +/- 0.009 and w = -0.99 +/- 0.11 for an open cosmology with constant dark energy equation of state w.
We analyze the cross-correlation of 2,705 unambiguously intervening Mg II (2796,2803A) quasar absorption line systems with 1,495,604 luminous red galaxies (LRGs) from the Fifth Data Release of the Sloan Digital Sky Survey within the redshift range 0. 36<=z<=0.8. We confirm with high precision a previously reported weak anti-correlation of equivalent width and dark matter halo mass, measuring the average masses to be log M_h(M_[solar]h^-1)=11.29 [+0.36,-0.62] and log M_h(M_[solar]h^-1)=12.70 [+0.53,-1.16] for systems with W[2796A]>=1.4A and 0.8A<=W[2796A]<1.4A, respectively. Additionally, we investigate the significance of a number of potential sources of bias inherent in absorber-LRG cross-correlation measurements, including absorber velocity distributions and the weak lensing of background quasars, which we determine is capable of producing a 20-30% bias in angular cross-correlation measurements on scales less than 2. We measure the Mg II - LRG cross-correlation for 719 absorption systems with v<60,000 km s^-1 in the quasar rest frame and find that these associated absorbers typically reside in dark matter haloes that are ~10-100 times more massive than those hosting unambiguously intervening Mg II absorbers. Furthermore, we find evidence for evolution of the redshift number density, dN/dz, with 2-sigma significance for the strongest (W>2.0A) absorbers in the DR5 sample. This width-dependent dN/dz evolution does not significantly affect the recovered equivalent width-halo mass anti-correlation and adds to existing evidence that the strongest Mg II absorption systems are correlated with an evolving population of field galaxies at z<0.8, while the non-evolving dN/dz of the weakest absorbers more closely resembles that of the LRG population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا