ترغب بنشر مسار تعليمي؟ اضغط هنا

The Clustering of DESI-like Luminous Red Galaxies Using Photometric Redshifts

108   0   0.0 ( 0 )
 نشر من قبل Rongpu Zhou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of the redshift-dependent clustering of a DESI-like luminous red galaxy (LRG) sample selected from the Legacy Survey imaging dataset, and use the halo occupation distribution (HOD) framework to fit the clustering signal. The photometric LRG sample in this study contains 2.7 million objects over the redshift range of $0.4 < z < 0.9$ over 5655 deg$^2$. We have developed new photometric redshift (photo-$z$) estimates using the Legacy Survey DECam and WISE photometry, with $sigma_{mathrm{NMAD}} = 0.02$ precision for LRGs. We compute the projected correlation function using new methods that maximize signal-to-noise ratio while incorporating redshift uncertainties. We present a novel algorithm for dividing irregular survey geometries into equal-area patches for jackknife resampling. For a five-parameter HOD model fit using the MultiDark halo catalog, we find that there is little evolution in HOD parameters except at the highest redshifts. The inferred large-scale structure bias is largely consistent with constant clustering amplitude over time. In an appendix, we explore limitations of Markov chain Monte Carlo fitting using stochastic likelihood estimates resulting from applying HOD methods to N-body catalogs, and present a new technique for finding best-fit parameters in this situation. Accompanying this paper we have released the Photometric Redshifts for the Legacy Surveys (PRLS) catalog of photo-$z$s obtained by applying the methods used in this work to the full Legacy Survey Data Release 8 dataset. This catalog provides accurate photometric redshifts for objects with $z < 21$ over more than 16,000 deg$^2$ of sky.



قيم البحث

اقرأ أيضاً

A new determination of the sound horizon scale in angular coordinates is presented. It makes use of ~ 0.6 x 10^6 Luminous Red Galaxies, selected from the Sloan Digital Sky Survey imaging data, with photometric redshifts. The analysis covers a redshif t interval that goes from z=0.5 to z=0.6. We find evidence of the Baryon Acoustic Oscillations (BAO) signal at the ~ 2.3 sigma confidence level, with a value of theta_{BAO} (z=0.55) = (3.90 pm 0.38) degrees, including systematic errors. To our understanding, this is the first direct measurement of the angular BAO scale in the galaxy distribution, and it is in agreement with previous BAO measurements. We also show how radial determinations of the BAO scale can break the degeneracy in the measurement of cosmological parameters when they are combined with BAO angular measurements. The result is also in good agreement with the WMAP7 best-fit cosmology. We obtain a value of w_0 = -1.03 pm 0.16 for the equation of state parameter of the dark energy, Omega_M = 0.26 pm 0.04 for the matter density, when the other parameters are fixed. We have also tested the sensitivity of current BAO measurements to a time varying dark energy equation of state, finding w_a = 0.06 pm 0.22 if we fix all the other parameters to the WMAP7 best-fit cosmology.
106 - P.A.A. Lopes 2007
In this work I discuss the necessary steps for deriving photometric redshifts for luminous red galaxies (LRGs) and galaxy clusters through simple empirical methods. The data used is from the Sloan Digital Sky Survey (SDSS). I show that with three ban ds only ({it gri}) it is possible to achieve results as accurate as the ones obtained by other techniques, generally based on more filters. In particular, the use of the $(g-i)$ color helps improving the final redshifts (especially for clusters), as this color monotonically increases up to $z sim 0.8$. For the LRGs I generate a catalog of $sim 1.5$ million objects at $z < 0.70$. The accuracy of this catalog is $sigma = 0.027$ for $z le 0.55$ and $sigma = 0.049$ for $0.55 < z le 0.70$. The photometric redshift technique employed for clusters is independent of a cluster selection algorithm. Thus, it can be applied to systems selected by any method or wavelength, as long as the proper optical photometry is available. When comparing the redshift listed in literature to the photometric estimate, the accuracy achieved for clusters is $sigma = 0.024$ for $z le 0.30$ and $sigma = 0.037$ for $030 < z le 0.55$. However, when considering the spectroscopic redshift as the mean value of SDSS galaxies on each cluster region, the accuracy is at the same level as found by other authors: $sigma = 0.011$ for $z le 0.30$ and $sigma = 0.016$ for $030 < z le 0.55$. The photometric redshift relation derived here is applied to thousands of cluster candidates selected elsewhere. I have also used galaxy photometric redshifts available in SDSS to identify groups in redshift space and then compare the redshift peak of the nearest group to each cluster redshift (ABRIDGED).
We apply clustering-based redshift inference to all extended sources from the Sloan Digital Sky Survey photometric catalogue, down to magnitude r = 22. We map the relationships between colours and redshift, without assumption of the sources spectral energy distributions (SED). We identify and locate star-forming, quiescent galaxies, and AGN, as well as colour changes due to spectral features, such as the 4000 AA{} break, redshifting through specific filters. Our mapping is globally in good agreement with colour-redshift tracks computed with SED templates, but reveals informative differences, such as the need for a lower fraction of M-type stars in certain templates. We compare our clustering-redshift estimates to photometric redshifts and find these two independent estimators to be in good agreement at each limiting magnitude considered. Finally, we present the global clustering-redshift distribution of all Sloan extended sources, showing objects up to z ~ 0.8. While the overall shape agrees with that inferred from photometric redshifts, the clustering redshift technique results in a smoother distribution, with no indication of structure in redshift space suggested by the photometric redshift estimates (likely artifacts imprinted by their spectroscopic training set). We also infer a higher fraction of high redshift objects. The mapping between the four observed colours and redshift can be used to estimate the redshift probability distribution function of individual galaxies. This work is an initial step towards producing a general mapping between redshift and all available observables in the photometric space, including brightness, size, concentration, and ellipticity.
The DESI survey will observe more than 8 million candidate luminous red galaxies (LRGs) in the redshift range $0.3<z<1.0$. Here we present a preliminary version of the DESI LRG target selection developed using Legacy Surveys Data Release 8 $g$, $r$, $z$ and $W1$ photometry. This selection yields a sample with a uniform surface density of ${sim},600$ deg$^{-2}$and very low predicted stellar contamination and redshift failure rates. During DESI Survey Validation, updat
We present a clustering analysis of Luminous Red Galaxies in SDSS Stripe 82. We study the angular 2-point correlation function, of 130,000 LRG candidates via colour-cut selections in izK with the K band coverage coming from UKIDSS LAS. We have used t he cross-correlation technique of Newman (2008) to establish the LRG redshift distribution. Cross-correlating with SDSS QSOs, MegaZ-LRGs and DEEP2 galaxies implies an average LRG redshift of z~1 with space density, n_g~3.2 +/-0.16 x10^-4 h^3 Mpc^-3. For theta<10, w(theta) significantly deviates from a single power-law. A double power-law with a break at r_b~2.4 h^-1 Mpc fits the data better, with best-fit scale length, r_0,1=7.63+/-0.27 h^-1Mpc and slope gamma_1=2.01 +/-0.02 at small scales and r_0,2=9.92 +/-0.40 h^-1 Mpc and gamma_2=1.64 +/-0.04 at large scales. Due to the flat slope at large scales, we find that a standard LambdaCDM linear model is accepted only at 2-3sigma, with the best-fit bias factor, b=2.74+/-0.07. We also fitted HOD models and estimate an effective halo mass of M_eff=3.3 +/-0.6x10^13 h^-1 M_sun. But at large scales, the current HOD models did not help explain the power excess in the clustering signal. We then compare the w(theta) results to those of Sawangwit et al. (2011) from 3 samples of LRGs at lower redshifts to measure clustering evolution. We find that a long-lived model may be a poorer fit than at lower redshifts, although this assumes that the Stripe 82 LRGs are luminosity-matched to the AAOmega LRGs. We find stronger evidence for evolution in the form of the z~1 LRG correlation function, with the above flat 2-halo slope maintaining to r>50 h^-1 Mpc. Applying the cross-correlation test of Ross et al. (2011), we find little evidence that the result is due to systematics. Otherwise it may provide evidence for primordial non-Gaussianity in the matter distribution, with f^local_NL=90+/-30.[Abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا