ﻻ يوجد ملخص باللغة العربية
We perform de Haas-van Alphen measurements and quasiparticle self-consistent textit{GW} (QStextit{GW}) calculations on FeS. The calculated Fermi surface (FS) consists of two hole and two electron cylinders. We observe all the eight predicted FS cross sections experimentally. With momentum-independent band-energy adjustments of less than 0.1 eV, the maximum deviation between the calculated and observed cross sections is less than 0.2% of the Brillouin zone area for $B parallel c$. The carrier density is $sim$0.5 carriers/Fe. The mass enhancements are nearly uniform across the FS cylinders and moderate, $sim$2. The absence of a third hole cylinder with $d_{xy}$ character is favorable for the formation of a nodal superconducting gap.
We have completely determined the Fermi surface in KFe$_2$As$_2$ via de Haas-van Alphen (dHvA) measurements. Fundamental frequencies $epsilon$, $alpha$, $zeta$, and $beta$ are observed in KFe$_2$As$_2$. The first one is attributed to a hole cylinder
We present quasiparticle (QP) energies from fully self-consistent $GW$ (sc$GW$) calculations for a set of prototypical semiconductors and insulators within the framework of the projector-augmented wave methodology. To obtain converged results, both f
The magnetoresistance and magnetic torque of FeS are measured in magnetic fields $B$ of up to 18 T down to a temperature of 0.03 K. The superconducting transition temperature is found to be $T_c$ = 4.1 K, and the anisotropy ratio of the upper critica
Despite the fact that 1111-type iron arsenides hold the record transition temperature of iron-based superconductors, their electronic structures have not been studied much because of the lack of high-quality single crystals. In this study, we complet
Finding an accurate ab initio approach for calculating the electronic properties of transition metal oxides has been a problem for several decades. In this paper, we investigate the electronic structure of the transition metal monoxides MnO, CoO, and