ﻻ يوجد ملخص باللغة العربية
We focus on symmetries related to matrices and vectors appearing in the simulation of quantum many-body systems. Spin Hamiltonians have special matrix-symmetry properties such as persymmetry. Furthermore, the systems may exhibit physical symmetries translating into symmetry properties of the eigenvectors of interest. Both types of symmetry can be exploited in sparse representation formats such as Matrix Product States (MPS) for the desired eigenvectors. This paper summarizes symmetries of Hamiltonians for typical physical systems such as the Ising model and lists resulting properties of the related eigenvectors. Based on an overview of Matrix Product States (Tensor Trains or Tensor Chains) and their canonical normal forms we show how symmetry properties of the vector translate into relations between the MPS matrices and, in turn, which symmetry properties result from relations within the MPS matrices. In this context we analyze different kinds of symmetries and derive appropriate normal forms for MPS representing these symmetries. Exploiting such symmetries by using these normal forms will lead to a reduction in the number of degrees of freedom in the MPS matrices. This paper provides a uniform platform for both well-known and new results which are presented from the (multi-)linear algebra point of view.
We characterize the conditions under which a translationally invariant matrix product state (MPS) is invariant under local transformations. This allows us to relate the symmetry group of a given state to the symmetry group of a simple tensor. We expl
The theory of entanglement provides a fundamentally new language for describing interactions and correlations in many body systems. Its vocabulary consists of qubits and entangled pairs, and the syntax is provided by tensor networks. We review how ma
We present a general construction of matrix product states for stationary density matrices of one-dimensional quantum spin systems kept out of equilibrium through boundary Lindblad dynamics. As an application we review the isotropic Heisenberg quantu
Following the way proposed recently by Hernandez and Smirnov, we seek possible residual symmetries in the quark sector with a focus on the von Dyck groups. We begin with two extreme cases in which both $theta_{13}$ and $theta_{23}$ or only $theta_{13
We propose to analyse the statistical properties of a sequence of vectors using the spectrum of the associated Gram matrix. Such sequences arise e.g. by the repeated action of a deterministic kicked quantum dynamics on an initial condition or by a ra