ترغب بنشر مسار تعليمي؟ اضغط هنا

The Hydrodynamic Environment for the s Process in the He-Shell Flash of AGB Stars

138   0   0.0 ( 0 )
 نشر من قبل Falk Herwig
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The He-shell flash convection in AGB stars is the site for the high-temperature component of the s-process in low- and intermediate mass giants, driven by the Ne22 neutron source. [...] The upper convection boundary plays a critical role during the H-ingestion episode that may lead to neutron-bursts in the most metal-poor AGB stars. We address these problems through global 3-dimensional hydrodynamic simulations including the entire spherical He-shell flash convection zone (as oposed to the 3D box-in-a-star simulations). An important aspect of our current effort is to establish the feasibility of our appoach. We explain why we favour the explicit treatment over the anelastic approximation for this problem. The simulations presented in this paper use a Cartesian grid of 512^3 cells and have been run on four 8-core workstations for four days to simulate ~5000s, which corresponds to almost ten convective turn-over times. The convection layer extends radially at the simulated point in the flash evolution over 7 H_p pressure scale-heights and exceeds the size of the underlying core. Convection is dominated by large convective cells that fill more than an entire octant. [...]



قيم البحث

اقرأ أيضاً

We present the first 3-dimensional, fully compressible gas-dynamics simulations in $4pi$ geometry of He-shell flash convection with proton-rich fuel entrainment at the upper boundary. This work is motivated by the insufficiently understood observed c onsequences of the H-ingestion flash in post-AGB stars (Sakurais object) and metal-poor AGB stars. Our investigation is focused on the entrainment process at the top convection boundary and on the subsequent advection of H-rich material into deeper layers, and we therefore ignore the burning of the proton-rich fuel in this study. We find that, for our deep convection zone, coherent convective motions of near global scale appear to dominate the flow. At the top boundary convective shear flows are stable against Kelvin-Helmholtz instabilities. However, such shear instabilities are induced by the boundary-layer separation in large-scale, opposing flows. This links the global nature of thick shell convection with the entrainment process. We establish the quantitative dependence of the entrainment rate on grid resolution. With our numerical technique simulations with $1024^3$ cells or more are required to reach a numerical fidelity appropriate for this problem. However, only the result from the $1536^3$ simulation provides a clear indication that we approach convergence with regard to the entrainment rate. Our results demonstrate that our method, which is described in detail, can provide quantitative results related to entrainment and convective boundary mixing in deep stellar interior environments with veryvstiff convective boundaries. For the representative case we study in detail, we find an entrainment rate of $4.38 pm 1.48 times 10^{-13}M_odot mathrm{/s}$.
In this paper we present a large-scale sensitivity study of reaction rates in the main component of the $s$ process. The aim of this study is to identify all rates, which have a global effect on the $s$ process abundance distribution and the three mo st important rates for the production of each isotope. We have performed a sensitivity study on the radiative $^{13}$C-pocket and on the convective thermal pulse, sites of the $s$ process in AGB stars. We identified 22 rates, which have the highest impact on the $s$-process abundances in AGB stars.
116 - B. Cseh , M. Lugaro , V. DOrazi 2018
Context. Barium (Ba) stars are dwarf and giant stars enriched in elements heavier than iron produced by the slow neutron-capture process (s process). They belong to binary systems where the primary star evolved through the asymptotic giant branch (AG B) phase,during which it produced the s-process elements and transferred them onto the secondary, now observed as a Ba star. Aims. We compare the largest homogeneous set of Ba giant star observations of the s-process elements Y, Zr, La, Ce, and Nd with AGB nucleosynthesis models to reach a better understanding of the s process in AGB stars. Methods. By considering the light-s (ls: Y and Zr) heavy-s (hs: La, Ce, and Nd) and elements individually, we computed for the first time quantitative error bars for the different hs-element/ls-element abundance ratios, and for each of the sample stars. We compared these ratios to low-mass AGB nucleosynthesis models. We excluded La from our analysis because the strong La lines in some of the sample stars cause an overestimation and unreliable abundance determination, as compared to the other observed hs-type elements. Results. All the computed hs-type to ls-type element ratios show a clear trend of increasing with decreasing metallicity with a small spread (less than a factor of 3). This trend is predicted by low-mass AGB models where 13C is the main neutron source. The comparison with rotating AGB models indicates the need for the presence of an angular momentum transport mechanism that should not transport chemical species, but significantly reduce the rotational speed of the core in the advanced stellar evolutionary stages. This is an independent confirmation of asteroseismology observations of the slow down of core rotation in giant stars, and of rotational velocities of white dwarfs lower than predicted by models without an extra angular momentum transport mechanism.
The production of the elements heavier than iron via slow neutron captures (the s process) is a main feature of the contribution of asymptotic giant branch (AGB) stars of low mass (< 5 Msun) to the chemistry of the cosmos. However, our understanding of the main neutron source, the 13C(alpha,n)16O reaction, is still incomplete. It is commonly assumed that in AGB stars mixing beyond convective borders drives the formation of 13C pockets. However, there is no agreement on the nature of such mixing and free parameters are present. By means of a parametric model we investigate the impact of different mixing functions on the final s-process abundances in low-mass AGB models. Typically, changing the shape of the mixing function or the mass extent of the region affected by the mixing produce the same results. Variations in the relative abundance distribution of the three s-process peaks (Sr, Ba, and Pb) are generally within +/-0.2 dex, similar to the observational error bars. We conclude that other stellar uncertainties - the effect of rotation and of overshoot into the C-O core - play a more important role than the details of the mixing function. The exception is at low metallicity, where the Pb abundance is significantly affected. In relation to the composition observed in stardust SiC grains from AGB stars, the models are relatively close to the data only when assuming the most extreme variation in the mixing profile.
The high resolution optical spectra of H-deficient stars, R Coronae Borealis stars and H-deficient carbon stars are analyzed by synthesizing the C2 Swan bands (0,1), (0,0), and (1,0) using our detailed line-list and Uppsala model atmosphere, to deter mine the C-abundances and the 12C/13C ratios which are potential clues to the formation process of these stars. The C-abundances derived from C2 bands are about the same for the adopted models constructed with different carbon abundances over the range 8.5 (C/He = 0.1%) to 10.5 (C/He = 10%). The carbon abundances derived from C I lines are a factor of four lower than that adopted for the model atmosphere over the same C/He interval, as reported by Asplund et al.: the carbon problem. In principle, the carbon abundances obtained from C2 Swan bands and that adopted for the model atmosphere can be equated for a particular choice of C/He that varies from star to star (unlike C I lines). Then, the carbon problem for C2 bands is eliminated. However, such C/He ratios are in general less than those of the extreme helium stars, the seemingly natural relatives to the RCB and HdC stars. The derived carbon abundances and the 12C/13C ratios are discussed in light of the double degenerate (DD) and the final flash (FF) scenarios. The carbon abundance and the 12C/13C ratios for the FF product, Sakurais Object is derived. The carbon abundance in the Sakurais object is 10 times higher than in the RCB star VZ Sgr. On an average, the carbon abundance in the Sakurais Object is about 10 to 100 times higher than in RCB stars. The 12C/13C ratio in Sakurais Object is 3.4, the equilibrium value, as expected for FF products.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا