ﻻ يوجد ملخص باللغة العربية
We present the first 3-dimensional, fully compressible gas-dynamics simulations in $4pi$ geometry of He-shell flash convection with proton-rich fuel entrainment at the upper boundary. This work is motivated by the insufficiently understood observed consequences of the H-ingestion flash in post-AGB stars (Sakurais object) and metal-poor AGB stars. Our investigation is focused on the entrainment process at the top convection boundary and on the subsequent advection of H-rich material into deeper layers, and we therefore ignore the burning of the proton-rich fuel in this study. We find that, for our deep convection zone, coherent convective motions of near global scale appear to dominate the flow. At the top boundary convective shear flows are stable against Kelvin-Helmholtz instabilities. However, such shear instabilities are induced by the boundary-layer separation in large-scale, opposing flows. This links the global nature of thick shell convection with the entrainment process. We establish the quantitative dependence of the entrainment rate on grid resolution. With our numerical technique simulations with $1024^3$ cells or more are required to reach a numerical fidelity appropriate for this problem. However, only the result from the $1536^3$ simulation provides a clear indication that we approach convergence with regard to the entrainment rate. Our results demonstrate that our method, which is described in detail, can provide quantitative results related to entrainment and convective boundary mixing in deep stellar interior environments with veryvstiff convective boundaries. For the representative case we study in detail, we find an entrainment rate of $4.38 pm 1.48 times 10^{-13}M_odot mathrm{/s}$.
The He-shell flash convection in AGB stars is the site for the high-temperature component of the s-process in low- and intermediate mass giants, driven by the Ne22 neutron source. [...] The upper convection boundary plays a critical role during the H
Context. Multidimensional hydrodynamic simulations of convection in stellar interiors are numerically challenging, especially for flows at low Mach numbers. Methods. We explore the benefits of using a low-Mach hydrodynamic flux solver and demonstra
Small-scale dynamo action is often held responsible for the generation of quiet-Sun magnetic fields. We aim to determine the excitation conditions and saturation level of small-scale dynamos in non-rotating turbulent convection at low magnetic Prandt
We present a statistical analysis of turbulent convection in stars within our Reynolds-Averaged Navier Stokes (RANS) framework in spherical geometry which we derived from first principles. The primary results reported in this document include: (1) an
Convection is the mechanism by which energy is transported through the outermost 30% of the Sun. Solar turbulent convection is notoriously difficult to model across the entire convection zone where the density spans many orders of magnitude. In this