ﻻ يوجد ملخص باللغة العربية
The production of the elements heavier than iron via slow neutron captures (the s process) is a main feature of the contribution of asymptotic giant branch (AGB) stars of low mass (< 5 Msun) to the chemistry of the cosmos. However, our understanding of the main neutron source, the 13C(alpha,n)16O reaction, is still incomplete. It is commonly assumed that in AGB stars mixing beyond convective borders drives the formation of 13C pockets. However, there is no agreement on the nature of such mixing and free parameters are present. By means of a parametric model we investigate the impact of different mixing functions on the final s-process abundances in low-mass AGB models. Typically, changing the shape of the mixing function or the mass extent of the region affected by the mixing produce the same results. Variations in the relative abundance distribution of the three s-process peaks (Sr, Ba, and Pb) are generally within +/-0.2 dex, similar to the observational error bars. We conclude that other stellar uncertainties - the effect of rotation and of overshoot into the C-O core - play a more important role than the details of the mixing function. The exception is at low metallicity, where the Pb abundance is significantly affected. In relation to the composition observed in stardust SiC grains from AGB stars, the models are relatively close to the data only when assuming the most extreme variation in the mixing profile.
We present a new measurement of the $alpha$-spectroscopic factor ($S_alpha$) and the asymptotic normalization coefficient (ANC) for the 6.356 MeV 1/2$^+$ subthreshold state of $^{17}$O through the $^{13}$C($^{11}$B, $^{7}$Li)$^{17}$O transfer reactio
It is well known that thermally pulsing Asymptotic Giant Branch stars with low mass play a relevant role in the chemical evolution. They have synthesized about 30% of the galactic carbon and provide an important contribution to the nucleosynthesis of
The chemical content of the planetary nebula NGC 3918 is investigated through deep, high-resolution (R~40000) UVES at VLT spectrophotometric data. We identify and measure more than 750 emission lines, making ours one of the deepest spectra ever taken
In this paper we present a large-scale sensitivity study of reaction rates in the main component of the $s$ process. The aim of this study is to identify all rates, which have a global effect on the $s$ process abundance distribution and the three mo
Context. Barium (Ba) stars are dwarf and giant stars enriched in elements heavier than iron produced by the slow neutron-capture process (s process). They belong to binary systems where the primary star evolved through the asymptotic giant branch (AG