ﻻ يوجد ملخص باللغة العربية
Microwave pinning-mode resonances found around integer quantum Hall effects, are a signature of crystallized quasiparticles or holes. Application of in-plane magnetic field to these crystals, increasing the Zeeman energy, has negligible effect on the resonances just below Landau level filling $ u=2$, but increases the pinning frequencies near $ u=1$, particularly for smaller quasiparticle/hole densities. The charge dynamics near $ u=1$, characteristic of a crystal order, are affected by spin, in a manner consistent with a Skyrme crystal.
Microwave spectroscopy within the Landau filling ($ u$) range of the integer quantum Hall effect (IQHE) has revealed pinning mode resonances signifying Wigner solids (WSs) composed of quasi-particles or -holes. We study pinning modes of WSs in wide q
Thermal measurements on a GaAs/AlGaAs heterostructure reveal that the state of the confined two-dimensional electrons dramatically affects the nuclear-spin diffusion near Landau level filling factor u=1. The experiments provide quantitative evidence
Hyperfine interactions between electron and nuclear spins in the quantum Hall regime provide powerful means for manipulation and detection of nuclear spins. In this work we demonstrate that significant changes in nuclear spin polarization can be crea
We have measured magnetic field dependences of the attenuation and velocity of surface acoustic waves in a high-mobility $n$-GaAs/AlGaAs structure with a wide quantum well. The results allowed us to find the complex conductance, $sigma(omega)$, of th
We report low temperature ($T$) heat capacity ($C$) data on a multiple-quantum-well GaAs/AlGaAs sample in the quantum Hall regime. Relative to its low field magnitude, $C$ exhibits up to 10^5-fold enhancement near $ u$=1 where Skyrmions arethe ground