صُمِمَتْ صيغة عامة لتمثيل الأنماط المادية للتطبيقات في التحميل الديناميكي. تم تصميم أساليب رقمية لحساب الاستجابة للصدمة والضغط المدرج والإفراز المدرج، تشمل الحلول السابقة لمعادلات الدولة المكعبة. وقد وجد أن الأساليب الرقمية كانت مرنة وثابتة، وتطابقت النتائج التحليلية بدقة عالية. تم ربط الحلول الأساسية للضغط المدرج والصدمة لحل المسارات الإجهاد المركب، مثل الأثر الصدمي المسبب والتفاعل الصدمي مع واجهة مستوية بين مواد مختلفة. هذه الحسابات تصحح الكثير من الفيزياء التي تشهدها التجارب الديناميكية المادية دون الحاجة إلى تحليلات محددة الموقع. تم إجراء حسابات بالأمثلة لتاريخ التحميل في المعادن، والتي توضح تأثير العمل البلاستيكي على الحرارات الناتجة في التجارب القريبة من الإحتسابية والإفراز الصدمي، وتأثير الانتقال المرحلي.
A general formulation was developed to represent material models for applications in dynamic loading. Numerical methods were devised to calculate response to shock and ramp compression, and ramp decompression, generalizing previous solutions for scalar equations of state. The numerical methods were found to be flexible and robust, and matched analytic results to a high accuracy. The basic ramp and shock solution methods were coupled to solve for composite deformation paths, such as shock-induced impacts, and shock interactions with a planar interface between different materials. These calculations capture much of the physics of typical material dynamics experiments, without requiring spatially-resolving simulations. Example calculations were made of loading histories in metals, illustrating the effects of plastic work on the temperatures induced in quasi-isentropic and shock-release experiments, and the effect of a phase transition.
We derive expressions for shock formation based on the local curvature of the flow characteristics during dynamic compression. Given a specific ramp adiabat, calculated for instance from the equation of state for a substance, the ideal nonlinear shap
Here, we provide a theoretical framework revealing that a steady compression ramp flow must have the minimal dissipation of kinetic energy, and can be demonstrated using the least action principle. For a given inflow Mach number $M_{0}$ and ramp angl
Direct modeling of porous materials under shock is a complex issue. We investigate such a system via the newly developed material-point method. The effects of shock strength and porosity size are the main concerns. For the same porosity, the effects
The collapse of cavities under shock is a key problem in various fields ranging from erosion of material, ignition of explosive, to sonoluminescence, etc. We study such processes using the material-point-method developed recently in the field of soli
In this work, we discuss use of machine learning techniques for rapid prediction of detonation properties including explosive energy, detonation velocity, and detonation pressure. Further, analysis is applied to individual molecules in order to explo