ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid 2D surface trap for quantum simulation

39   0   0.0 ( 0 )
 نشر من قبل Jonathon Gillen
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a novel optical trapping scheme for ultracold atoms. Using a combination of evanescent wave, standing wave, and magnetic potentials we create a deeply 2D Bose-Einstein condensate (BEC) at a few microns from a glass surface. Using techniques such as broadband white light to create evanescent and standing waves, we realize a smooth potential with a trap frequency aspect ratio of 300:1:1 and long lifetimes. This makes the setup suitable for many-body quantum simulations and applications such as high precision measurements close to surfaces.

قيم البحث

اقرأ أيضاً

Two-dimensional crystals of trapped ions are a promising system with which to implement quantum simulations of challenging problems such as spin frustration. Here, we present a design for a surface-electrode elliptical ion trap which produces a 2-D i on crystal and is amenable to microfabrication, which would enable higher simulated coupling rates, as well as interactions based on magnetic forces generated by on-chip currents. Working in an 11 K cryogenic environment, we experimentally verify to within 5% a numerical model of the structure of ion crystals in the trap. We also explore the possibility of implementing quantum simulation using magnetic forces, and calculate J-coupling rates on the order of 10^3 / s for an ion crystal height of 10 microns, using a current of 1 A.
Quantum simulations of spin systems could enable the solution of problems which otherwise require infeasible classical resources. Such a simulation may be implemented using a well-controlled system of effective spins, such as a two-dimensional lattic e of locally interacting ions. We propose here a layered planar rf trap design that can be used to create arbitrary two-dimensional lattices of ions. The design also leads naturally to ease of microfabrication. As a first experimental demonstration, we confine strontium-88 ions in a mm-scale lattice trap and verify numerical models of the trap by measuring the motional frequencies. We also confine 440 nm diameter charged microspheres and observe ion-ion repulsion between ions in neighboring lattice sites. Our design, when scaled to smaller ion-ion distances, is appropriate for quantum simulation schemes, e.g. that of Porras and Cirac (PRL 92 207901 (2004)). We note, however, that in practical realizations of the trap, an increase in the secular frequency with decreasing ion spacing may make a coupling rate that is large relative to the decoherence rate in such a trap difficult to achieve.
We present an inverted GaAs 2D electron gas with self-assembled InAs quantum dots in close proximity, with the goal of combining quantum transport with quantum optics experiments. We have grown and characterized several wafers -- using transport, AFM and optics -- finding narrow-linewidth optical dots and high-mobility, single subband 2D gases. Despite being buried 500 nm below the surface, the dots are clearly visible on AFM scans, allowing precise localization and paving the way towards a hybrid quantum system integrating optical dots with surface gate-defined nanostructures in the 2D gas.
The dynamics of quantum vortices in a two-dimensional annular condensate are considered by numerically simulating the Gross-Pitaevskii equation. Families of solitary wave sequences are reported, both without and with a persistent flow, for various va lues of interaction strength. It is shown that in the toroidal geometry the dispersion curve of solutions is much richer than in the cases of a semi-infinite channel or uniform condensate studied previously. In particular, the toroidal condensate is found to have states of single vortices at the same position and circulation that move with different velocities. The stability of the solitary wave sequences for the annular condensate without a persistent flow are also investigated by numerically evolving the solutions in time. In addition, the interaction of vortex-vortex pairs and vortex-antivortex pairs is considered and it is demonstrated that the collisions are either elastic or inelastic depending on the magnitude of the angular velocity. The similarities and differences between numerically simulating the Gross-Pitaevskii equation and using a point vortex model for these collisions are elucidated.
The optimisation of two-dimensional (2D) lattice ion trap geometries for trapped ion quantum simulation is investigated. The geometry is optimised for the highest ratio of ion-ion interaction rate to decoherence rate. To calculate the electric field of such array geometries a numerical simulation based on a Biot-Savart like law method is used. In this article we will focus on square, hexagonal and centre rectangular lattices for optimisation. A method for maximising the homogeneity of trapping site properties over an array is presented for arrays of a range of sizes. We show how both the polygon radii and separations scale to optimise the ratio between the interaction and decoherence rate. The optimal polygon radius and separation for a 2D lattice is found to be a function of the ratio between rf voltage and drive frequency applied to the array. We then provide a case study for 171Yb+ ions to show how a two-dimensional quantum simulator array could be designed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا