ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-gluon one-loop amplitudes numerically

116   0   0.0 ( 0 )
 نشر من قبل Achilleas Lazopoulos
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف A. Lazopoulos




اسأل ChatGPT حول البحث

A c++ implementation of the D_s-dimensional unitarity cut algorithm for the numerical evaluation of the virtual contribution to NLO QCD amplitudes is presented. The current version includes an arbitrary number of external gluons with gluonic propagators in the loop. The building blocks are tree level color-ordered amplitudes with gluons and with gluons and two scalars in five dimensions. Numerical stability issues are addressed and agreement has been reached with the results published in the literature.



قيم البحث

اقرأ أيضاً

The rational parts of 5-gluon one-loop amplitudes are computed by using the newly developed method for computing the rational parts directly from Feynman integrals. We found complete agreement with the previously well-known results of Bern, Dixon and Kosower obtained by using the string theory method. Intermediate results for some combinations of Feynman diagrams are presented in order to show the efficiency of the method and the local cancellation between different contributions.
The rational parts of 6-gluon one-loop amplitudes with scalars circulating in the loop are computed by using the newly developed method for computing the rational parts directly from Feynman integrals. We present the analytic results for the two MHV helicity configurations: $(1^-2^+3^+4^-5^+6^+)$ and $(1^-2^+3^-4^+5^+6^+)$, and the two NMHV helicity configurations: $(1^-2^-3^+4^-5^+6^+)$ and $(1^-2^+3^-4^+5^-6^+)$. Combined with the previously computed results for the cut-constructible part, our results are the last missing pieces for the complete partial helicity amplitudes of the 6-gluon one-loop QCD amplitude.
We explore the relation between resummation and explicit multi-loop calculations for QCD hard-scattering amplitudes. We describe how the factorization properties of amplitudes lead to the exponentiation of double and single poles at each order of per turbation theory. For these amplitudes, previously-observed relations between single and double poles in different 2 to 2 processes can now be interpreted in terms of universal functions associated with external partons and process-dependent anomalous dimensions that describe coherent soft radiation. Catanis proposal for multiple poles in dimensionally-continued amplitudes emerges naturally.
We suggest a new approach for the automatic and fully numerical evaluation of one-loop scattering amplitudes in perturbative quantum field theory. We use suitably formulated dispersion relations to perform the calculation as a convolution of tree-lev el amplitudes. This allows to take advantage of the iterative numerical algorithms for the evaluation of leading order matrix elements.
The high energy amplitudes of the large angles Moller scattering are calculated in frame of chiral basis in Born and 1-loop QED level. Taking into account as well the contribution from emission of soft real photons the compact relations free from inf rared divergences are obtained. The expressions for separate chiral amplitudes contribution to the cross section are in agreement with renormalization group predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا