ترغب بنشر مسار تعليمي؟ اضغط هنا

A Fully Numerical Approach to One-Loop Amplitudes

119   0   0.0 ( 0 )
 نشر من قبل A. D. Polosa
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We suggest a new approach for the automatic and fully numerical evaluation of one-loop scattering amplitudes in perturbative quantum field theory. We use suitably formulated dispersion relations to perform the calculation as a convolution of tree-level amplitudes. This allows to take advantage of the iterative numerical algorithms for the evaluation of leading order matrix elements.



قيم البحث

اقرأ أيضاً

Recent progress in unitarity techniques for one-loop scattering amplitudes makes a numerical implementation of this method possible. We present a 4-dimensional unitarity method for calculating the cut-constructible part of amplitudes and implement th e method in a numerical procedure. Our technique can be applied to any one-loop scattering amplitude and offers the possibility that one-loop calculations can be performed in an automatic fashion, as tree-level amplitudes are currently done. Instead of individual Feynman diagrams, the ingredients for our one-loop evaluation are tree-level amplitudes, which are often already known. To study the practicality of this method we evaluate the cut-constructible part of the 4, 5 and 6 gluon one-loop amplitudes numerically, using the analytically known 4, 5 and 6 gluon tree-level amplitudes. Comparisons with analytic answers are performed to ascertain the numerical accuracy of the method.
We explain how one-loop amplitudes with massive fermions can be computed using only on-shell information. We first use the spinor-helicity formalism in six dimensions to perform generalised unitarity cuts in $d$ dimensions. We then show that divergen t wavefunction cuts can be avoided, and the remaining ambiguities in the renormalised amplitudes can be fixed, by matching to universal infrared poles in $4-2epsilon$ dimensions and ultraviolet poles in $6-2epsilon$ dimensions. In the latter case we construct an effective Lagrangian in six dimensions and reduce the additional constraint to an on-shell tree-level computation.
207 - Wei Gong , Zoltan Nagy , 2008
One approach to the calculation of cross sections for infrared-safe observables in high energy collisions at next-to-leading order is to perform all of the integrations, including the virtual loop integration, by Monte Carlo numerical integration. In a previous paper, two of us have shown how one can perform such a virtual loop integration numerically after first introducing a Feynman parameter representation. In this paper, we perform the integration directly, without introducing Feynman parameters, after suitably deforming the integration contour. Our example is the N-photon scattering amplitude with a massless electron loop. We report results for N = 6 and N = 8.
125 - A. Lazopoulos 2008
A c++ implementation of the D_s-dimensional unitarity cut algorithm for the numerical evaluation of the virtual contribution to NLO QCD amplitudes is presented. The current version includes an arbitrary number of external gluons with gluonic propagat ors in the loop. The building blocks are tree level color-ordered amplitudes with gluons and with gluons and two scalars in five dimensions. Numerical stability issues are addressed and agreement has been reached with the results published in the literature.
189 - F.Yuasa , T.Ishikawa , Y.Kurihara 2011
In this paper, we describe a numerical approach to evaluate Feynman loop integrals. In this approach the key technique is a combination of a numerical integration method and a numerical extrapolation method. Since the computation is carried out in a fully numerical way, our approach is applicable to one-, two- and multi-loop diagrams. Without any analytic treatment it can compute diagrams with not only real masses but also complex masses for the internal particles. As concrete examples we present numerical results of a scalar one-loop box integral with complex masses and two-loop planar and non-planar box integrals with masses. We discuss the quality of our numerical computation by comparisons with other methods and also propose a self consistency check.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا