ﻻ يوجد ملخص باللغة العربية
We demonstrate nuclear double resonance for nanometer-scale volumes of spins where random fluctuations rather than Boltzmann polarization dominate. When the Hartmann-Hahn condition is met in a cross-polarization experiment, flip-flops occur between two species of spins and their fluctuations become coupled. We use magnetic resonance force microscopy to measure this effect between 1H and 13C spins in 13C-enriched stearic acid. The development of a cross-polarization technique for statistical ensembles adds an important tool for generating chemical contrast in nanometer-scale magnetic resonance.
The drive to improve the sensitivity of nuclear magnetic resonance (NMR) to smaller and smaller sample volumes has led to the development of a variety of techniques distinct from conventional inductive detection. In this chapter, we focus on the tech
We demonstrate that zero-field $beta$-detected nuclear quadrupole resonance and spin relaxation of low energy $^8$Li can be used as a sensitive local probe of structural phase transitions near a surface. We find that the transition near the surface o
We study the statistical mechanics of double-stranded semi-flexible polymers using both analytical techniques and simulation. We find a transition at some finite temperature, from a type of short range order to a fundamentally different sort of short
The many body quantum dynamics of dipolar coupled nuclear spins I = 1/2 on an otherwise isolated cubic lattice are studied with nuclear magnetic resonance (NMR). By increasing the signal-to-noise ratio by two orders of magnitude compared with previou
We propose a simple procedure by which the interaction parameters of the classical spin Hamiltonian can be determined from the knowledge of four-point correlation functions and specific heat. The proposal is demonstrated by using the correlation and