ﻻ يوجد ملخص باللغة العربية
The many body quantum dynamics of dipolar coupled nuclear spins I = 1/2 on an otherwise isolated cubic lattice are studied with nuclear magnetic resonance (NMR). By increasing the signal-to-noise ratio by two orders of magnitude compared with previous reports for the free induction decay (FID) of 19F in CaF2 we obtain new insight into its long-time behavior. We confirm that the tail of the FID is an exponentially decaying cosine, but our measurements reveal a second universal decay mode with comparable frequency but twice the decay constant. This result is in agreement with a recent theoretical prediction for the FID in terms of eigenvalues for the time evolution of chaotic many-body quantum systems.
We establish that the Fourier modes of the magnetization serve as the dynamical eigenmodes for the two-dimensional Ising model at the critical temperature with local spin-exchange moves, i.e., Kawasaki dynamics. We obtain the dynamical scaling proper
It has recently become possible to prepare ultrastable glassy materials characterised by structural relaxation times which vastly exceed the duration of any feasible experiment. Similarly, new algorithms have led to the production of ultrastable comp
We study the problem of predictability, or nature vs. nurture, in several disordered Ising spin systems evolving at zero temperature from a random initial state: how much does the final state depend on the information contained in the initial state,
We discuss similarities and differencies between systems of many interacting players maximizing their individual payoffs and particles minimizing their interaction energy. We analyze long-run behavior of stochastic dynamics of many interacting agents
We present results of a Monte Carlo study for the ferromagnetic Ising model with long range interactions in two dimensions. This model has been simulated for a large range of interaction parameter $sigma$ and for large sizes. We observe that the resu