ﻻ يوجد ملخص باللغة العربية
We consider the problem of finding equivalent minimal-size reformulations of SQL queries in presence of embedded dependencies [1]. Our focus is on select-project-join (SPJ) queries with equality comparisons, also known as safe conjunctive (CQ) queries, possibly with grouping and aggregation. For SPJ queries, the semantics of the SQL standard treat query answers as multisets (a.k.a. bags), whereas the stored relations may be treated either as sets, which is called bag-set semantics for query evaluation, or as bags, which is called bag semantics. (Under set semantics, both query answers and stored relations are treated as sets.) In the context of the above Query-Reformulation Problem, we develop a comprehensive framework for equivalence of CQ queries under bag and bag-set semantics in presence of embedded dependencies, and make a number of conceptual and technical contributions. Specifically, we develop equivalence tests for CQ queries in presence of arbitrary sets of embedded dependencies under bag and bag-set semantics, under the condition that chase [9] under set semantics (set-chase) on the inputs terminates. We also present equivalence tests for aggregate CQ queries in presence of embedded dependencies. We use our equivalence tests to develop sound and complete (whenever set-chase on the inputs terminates) algorithms for solving instances of the Query-Reformulation Problem with CQ queries under each of bag and bag-set semantics, as well as for instances of the problem with aggregate queries.
Unstructured enterprise data such as reports, manuals and guidelines often contain tables. The traditional way of integrating data from these tables is through a two-step process of table detection/extraction and mapping the table layouts to an appro
We consider the problems of finding and determining certain query answers and of determining containment between queries; each problem is formulated in presence of materialized views and dependencies under the closed-world assumption. We show a tight
Understanding the meaning of existing SQL queries is critical for code maintenance and reuse. Yet SQL can be hard to read, even for expert users or the original creator of a query. We conjecture that it is possible to capture the logical intent of qu
In this paper, we focus on the problem of determining whether two conjunctive (CQ) queries posed on relational data are combined-semantics equivalent [9]. We continue the tradition of [2,5,9] of studying this problem using the tool of containment bet
The use of aggregates in recursion enables efficient and scalable support for a wide range of BigData algorithms, including those used in graph applications, KDD applications, and ML applications, which have proven difficult to be expressed and suppo