ﻻ يوجد ملخص باللغة العربية
We experimentally isolate, characterize and coherently control up to six individual nuclear spins that are weakly coupled to an electron spin in diamond. Our method employs multi-pulse sequences on the electron spin that resonantly amplify the interaction with a selected nuclear spin and at the same time dynamically suppress decoherence caused by the rest of the spin bath. We are able to address nuclear spins with interaction strengths that are an order of magnitude smaller than the electron spin dephasing rate. Our results provide a route towards tomography with single-nuclear-spin sensitivity and greatly extend the number of available quantum bits for quantum information processing in diamond.
We experimentally demonstrate the use of a single electronic spin to measure the quantum dynamics of distant individual nuclear spins from within a surrounding spin bath. Our technique exploits coherent control of the electron spin, allowing us to is
Optically-detected paramagnetic centers in wide-bandgap semiconductors are emerging as a promising platform for nanoscale metrology at room temperature. Of particular interest are applications where the center is used as a probe to interrogate other
The main source of decoherence for an electron spin confined to a quantum dot is the hyperfine interaction with nuclear spins. To analyze this process theoretically we diagonalize the central spin Hamiltonian in the high magnetic B-field limit. Then
We present a technique for manipulating the nuclear spins and the emission polarization from a single optically active quantum dot. When the quantum dot is tunnel coupled to a Fermi sea, we have discovered a natural cycle in which an electron spin is
The nitrogen-vacancy (NV) centre in diamond has emerged as a candidate to non-invasively hyperpolarise nuclear spins in molecular systems to improve the sensitivity of nuclear magnetic resonance (NMR) experiments. Several promising proof of principle