ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection and control of individual nuclear spins using a weakly coupled electron spin

112   0   0.0 ( 0 )
 نشر من قبل Tim Hugo Taminiau
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally isolate, characterize and coherently control up to six individual nuclear spins that are weakly coupled to an electron spin in diamond. Our method employs multi-pulse sequences on the electron spin that resonantly amplify the interaction with a selected nuclear spin and at the same time dynamically suppress decoherence caused by the rest of the spin bath. We are able to address nuclear spins with interaction strengths that are an order of magnitude smaller than the electron spin dephasing rate. Our results provide a route towards tomography with single-nuclear-spin sensitivity and greatly extend the number of available quantum bits for quantum information processing in diamond.

قيم البحث

اقرأ أيضاً

We experimentally demonstrate the use of a single electronic spin to measure the quantum dynamics of distant individual nuclear spins from within a surrounding spin bath. Our technique exploits coherent control of the electron spin, allowing us to is olate and monitor nuclear spins weakly coupled to the electron spin. Specifically, we detect the evolution of distant individual carbon-13 nuclear spins coupled to single nitrogen vacancy centers in a diamond lattice with hyperfine couplings down to a factor of 8 below the electronic spin bare dephasing rate. Potential applications to nanoscale magnetic resonance imaging and quantum information processing are discussed.
Optically-detected paramagnetic centers in wide-bandgap semiconductors are emerging as a promising platform for nanoscale metrology at room temperature. Of particular interest are applications where the center is used as a probe to interrogate other spins that cannot be observed directly. Using the nitrogen-vacancy center in diamond as a model system, we propose a new strategy to determining the spatial coordinates of weakly coupled nuclear spins. The central idea is to label the target nucleus with a spin polarization that depends on its spatial location, which is subsequently revealed by making this polarization flow back to the NV for readout. Using extensive analytical and numerical modeling, we show that the technique can attain high spatial resolution depending on the NV lifetime and target spin location. No external magnetic field gradient is required, which circumvents complications resulting from changes in the direction of the applied magnetic field, and considerably simplifies the required instrumentation. Extensions of the present technique may be adapted to pinpoint the locations of other paramagnetic centers in the NV vicinity or to yield information on dynamical processes in molecules on the diamond surface.
The main source of decoherence for an electron spin confined to a quantum dot is the hyperfine interaction with nuclear spins. To analyze this process theoretically we diagonalize the central spin Hamiltonian in the high magnetic B-field limit. Then we project the eigenstates onto an unpolarized state of the nuclear bath and find that the resulting density of states has Gaussian tails. The level spacing of the nuclear sublevels is exponentially small in the middle of each of the two electron Zeeman levels but increases super-exponentially away from the center. This suggests to select states from the wings of the distribution when the system is projected on a single eigenstate by a measurement to reduce the noise of the nuclear spin bath. This theory is valid when the external magnetic field is larger than a typical Overhauser field at high nuclear spin temperature.
We present a technique for manipulating the nuclear spins and the emission polarization from a single optically active quantum dot. When the quantum dot is tunnel coupled to a Fermi sea, we have discovered a natural cycle in which an electron spin is repeatedly created with resonant optical excitation. The spontaneous emission polarization and the nuclear spin polarization exhibit a bistability. For a sigma(+) pump, the emission switches from sigma(+) to sigma(-) at a particular detuning of the laser. Simultaneously, the nuclear spin polarization switches from positive to negative. Away from the bistability, the nuclear spin polarization can be changed continuously from negative to positive, allowing precise control via the laser wavelength.
The nitrogen-vacancy (NV) centre in diamond has emerged as a candidate to non-invasively hyperpolarise nuclear spins in molecular systems to improve the sensitivity of nuclear magnetic resonance (NMR) experiments. Several promising proof of principle experiments have demonstrated small-scale polarisation transfer from single NVs to hydrogen spins outside the diamond. However, the scaling up of these results to the use of a dense NV ensemble, which is a necessary prerequisite for achieving realistic NMR sensitivity enhancement, has not yet been demonstrated. In this work, we present evidence for a polarising interaction between a shallow NV ensemble and external nuclear targets over a micrometre scale, and characterise the challenges in achieving useful polarisation enhancement. In the most favourable example of the interaction with hydrogen in a solid state target, a maximum polarisation transfer rate of $approx 7500$ spins per second per NV is measured, averaged over an area containing order $10^6$ NVs. Reduced levels of polarisation efficiency are found for liquid state targets, where molecular diffusion limits the transfer. Through analysis via a theoretical model, we find that our results suggest implementation of this technique for NMR sensitivity enhancement is feasible following realistic diamond material improvements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا