ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensing remote nuclear spins

112   0   0.0 ( 0 )
 نشر من قبل Nan Zhao
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sensing single nuclear spins is a central challenge in magnetic resonance based imaging techniques. Although different methods and especially diamond defect based sensing and imaging techniques in principle have shown sufficient sensitivity, signals from single nuclear spins are usually too weak to be distinguished from background noise. Here, we present the detection and identification of remote single C-13 nuclear spins embedded in nuclear spin baths surrounding a single electron spins of a nitrogen-vacancy centre in diamond. With dynamical decoupling control of the centre electron spin, the weak magnetic field ~10 nT from a single nuclear spin located ~3 nm from the centre with hyperfine coupling as weak as ~500 Hz is amplified and detected. The quantum nature of the coupling is confirmed and precise position and the vector components of the nuclear field are determined. Given the distance over which nuclear magnetic fields can be detected the technique marks a firm step towards imaging, detecting and controlling nuclear spin species external to the diamond sensor.



قيم البحث

اقرأ أيضاً

We experimentally demonstrate the use of a single electronic spin to measure the quantum dynamics of distant individual nuclear spins from within a surrounding spin bath. Our technique exploits coherent control of the electron spin, allowing us to is olate and monitor nuclear spins weakly coupled to the electron spin. Specifically, we detect the evolution of distant individual carbon-13 nuclear spins coupled to single nitrogen vacancy centers in a diamond lattice with hyperfine couplings down to a factor of 8 below the electronic spin bare dephasing rate. Potential applications to nanoscale magnetic resonance imaging and quantum information processing are discussed.
The nitrogen-vacancy (NV) centre in diamond has emerged as a candidate to non-invasively hyperpolarise nuclear spins in molecular systems to improve the sensitivity of nuclear magnetic resonance (NMR) experiments. Several promising proof of principle experiments have demonstrated small-scale polarisation transfer from single NVs to hydrogen spins outside the diamond. However, the scaling up of these results to the use of a dense NV ensemble, which is a necessary prerequisite for achieving realistic NMR sensitivity enhancement, has not yet been demonstrated. In this work, we present evidence for a polarising interaction between a shallow NV ensemble and external nuclear targets over a micrometre scale, and characterise the challenges in achieving useful polarisation enhancement. In the most favourable example of the interaction with hydrogen in a solid state target, a maximum polarisation transfer rate of $approx 7500$ spins per second per NV is measured, averaged over an area containing order $10^6$ NVs. Reduced levels of polarisation efficiency are found for liquid state targets, where molecular diffusion limits the transfer. Through analysis via a theoretical model, we find that our results suggest implementation of this technique for NMR sensitivity enhancement is feasible following realistic diamond material improvements.
We experimentally isolate, characterize and coherently control up to six individual nuclear spins that are weakly coupled to an electron spin in diamond. Our method employs multi-pulse sequences on the electron spin that resonantly amplify the intera ction with a selected nuclear spin and at the same time dynamically suppress decoherence caused by the rest of the spin bath. We are able to address nuclear spins with interaction strengths that are an order of magnitude smaller than the electron spin dephasing rate. Our results provide a route towards tomography with single-nuclear-spin sensitivity and greatly extend the number of available quantum bits for quantum information processing in diamond.
240 - Yu Luo , Hongyi Yu , 2011
For donor nuclear spins in silicon, we show how to deterministically prepare various symmetric and asymmetric Dicke states which span a complete basis of the many-body Hilbert space. The state preparation is realized by cooperative pumping of nuclear spins by coupled donor electrons, and the required controls are in situ to the prototype Kane proposal for quantum computation. This scheme only requires a sub-gigahertz donor exchange coupling which can be readily achieved without atomically precise donor placement, hence it offers a practical way to prepare multipartite entanglement of spins in silicon with current technology. All desired Dicke states appear as the steady state under various pumping scenarios and therefore the preparation is robust and does not require accurate temporal controls. Numerical simulations with realistic parameters show that Dicke states of 10-20 qubits can be prepared with high fidelity in presence of decoherence and unwanted dynamics.
272 - F. Troiani , S. Carretta , 2013
Entanglement between individual spins can be detected by using thermodynamics quantities as entanglement witnesses. This applies to collective spins also, provided that their internal degrees of freedom are frozen, as in the limit of weakly-coupled n anomagnets. Here, we extend such approach to the detection of entanglement between subsystems of a spin cluster, beyond such weak-coupling limit. The resulting inequalities are violated in spin clusters with different geometries, thus allowing the detection of zero- and finite-temperature entanglement. Under relevant and experimentally verifiable conditions, all the required expectation values can be traced back to correlation functions of individual spins, that are now made selectively available by four-dimensional inelastic neutron scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا