ﻻ يوجد ملخص باللغة العربية
We describe a novel scheme to implement scalable quantum information processing using Li-Cs molecular state to entangle $^{6}$Li and $^{133}$Cs ultracold atoms held in independent optical lattices. The $^{6}$Li atoms will act as quantum bits to store information, and $^{133}$Cs atoms will serve as messenger bits that aid in quantum gate operations and mediate entanglement between distant qubit atoms. Each atomic species is held in a separate optical lattice and the atoms can be overlapped by translating the lattices with respect to each other. When the messenger and qubit atoms are overlapped, targeted single spin operations and entangling operations can be performed by coupling the atomic states to a molecular state with radio-frequency pulses. By controlling the frequency and duration of the radio-frequency pulses, entanglement can either be created or swapped between a qubit messenger pair. We estimate operation fidelities for entangling two distant qubits and discuss scalability of this scheme and constraints on the optical lattice lasers.
We report on the design, fabrication, and preliminary testing of a 150 zone array built in a `surface-electrode geometry microfabricated on a single substrate. We demonstrate transport of atomic ions between legs of a `Y-type junction and measure the
Experimentalists seeking to improve the coherent lifetimes of quantum bits have generally focused on mitigating decoherence mechanisms through, for example, improvements to qubit designs and materials, and system isolation from environmental perturba
We report the creation and characterization of a near quantum-degenerate gas of polar $^{40}$K-$^{87}$Rb molecules in their absolute rovibrational ground state. Starting from weakly bound heteronuclear KRb Feshbach molecules, we implement precise con
As a result of the capabilities of quantum information, the science of quantum information processing is now a prospering, interdisciplinary field focused on better understanding the possibilities and limitations of the underlying theory, on developi
Large-scale quantum information processors must be able to transport and maintain quantum information, and repeatedly perform logical operations. Here we demonstrate a combination of all the fundamental elements required to perform scalable quantum c