ترغب بنشر مسار تعليمي؟ اضغط هنا

Complete methods set for scalable ion trap quantum information processing

144   0   0.0 ( 0 )
 نشر من قبل Jonathan Home
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Large-scale quantum information processors must be able to transport and maintain quantum information, and repeatedly perform logical operations. Here we demonstrate a combination of all the fundamental elements required to perform scalable quantum computing using qubits stored in the internal states of trapped atomic ions. We quantify the repeatability of a multi-qubit operation, observing no loss of performance despite qubit transport over macroscopic distances. Key to these results is the use of different pairs of beryllium ion hyperfine states for robust qubit storage, readout and gates, and simultaneous trapping of magnesium re-cooling ions along with the qubit ions.



قيم البحث

اقرأ أيضاً

A scalable, multiplexed ion trap for quantum information processing is fabricated and tested. The trap design and fabrication process are optimized for scalability to small trap size and large numbers of interconnected traps, and for integration of c ontrol electronics and optics. Multiple traps with similar designs are tested with Cd+, Mg+, and Sr+ ions at room temperature and with Sr+ at 6 K, with respective ion lifetimes of 90 s, 300 +/- 30 s, 56 +/- 6 s, and 4.5 +/- 1.1 hours. The motional heating rate for Mg+ at room temperature and a trap frequency of 1.6 MHz is measured to be 7 +/- 3 quanta per millisecond. For Sr+ at 6 K and 540 kHz the heating rate is measured to be 220 +/- 30 quanta per second.
We demonstrate confinement of individual atomic ions in a radio-frequency Paul trap with a novel geometry where the electrodes are located in a single plane and the ions confined above this plane. This device is realized with a relatively simple fabr ication procedure and has important implications for quantum state manipulation and quantum information processing using large numbers of ions. We confine laser-cooled Mg-24 ions approximately 40 micrometer above planar gold electrodes. We measure the ions motional frequencies and compare them to simulations. From measurements of the escape time of ions from the trap, we also determine a heating rate of approximately five motional quanta per millisecond for a trap frequency of 5.3 MHz.
We report on the design, fabrication, and preliminary testing of a 150 zone array built in a `surface-electrode geometry microfabricated on a single substrate. We demonstrate transport of atomic ions between legs of a `Y-type junction and measure the in-situ heating rates for the ions. The trap design demonstrates use of a basic component design library that can be quickly assembled to form structures optimized for a particular experiment.
In this study, we report the first Cu-filled through silicon via (TSV) integrated ion trap. TSVs are placed directly underneath electrodes as vertical interconnections between ion trap and a glass interposer, facilitating the arbitrary geometry desig n with increasing electrodes numbers and evolving complexity. The integration of TSVs reduces the form factor of ion trap by more than 80%, minimizing parasitic capacitance from 32 to 3 pF. A low RF dissipation is achieved in spite of the absence of ground screening layer. The entire fabrication process is on 12-inch wafer and compatible with established CMOS back end process. We demonstrate the basic functionality of the trap by loading and laser-cooling single 88Sr+ ions. It is found that both heating rate (17 quanta/ms for an axial frequency of 300 kHz) and lifetime (~30 minutes) are comparable with traps of similar dimensions. This work pioneers the development of TSV-integrated ion traps, enriching the toolbox for scalable quantum computing.
130 - D. Kielpinski 2008
Atomic ions trapped in ultra-high vacuum form an especially well-understood and useful physical system for quantum information processing. They provide excellent shielding of quantum information from environmental noise, while strong, well-controlled laser interactions readily provide quantum logic gates. A number of basic quantum information protocols have been demonstrated with trapped ions. Much current work aims at the construction of large-scale ion-trap quantum computers using complex microfabricated trap arrays. Several groups are also actively pursuing quantum interfacing of trapped ions with photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا