ﻻ يوجد ملخص باللغة العربية
We address the problem of curvature estimation from sampled compact sets. The main contribution is a stability result: we show that the gaussian, mean or anisotropic curvature measures of the offset of a compact set K with positive $mu$-reach can be estimated by the same curvature measures of the offset of a compact set K close to K in the Hausdorff sense. We show how these curvature measures can be computed for finite unions of balls. The curvature measures of the offset of a compact set with positive $mu$-reach can thus be approximated by the curvature measures of the offset of a point-cloud sample. These results can also be interpreted as a framework for an effective and robust notion of curvature.
For $pin (1,2]$ and a bounded, convex, nonempty, open set $Omegasubsetmathbb R^2$ let $mu_p(bar{Omega},cdot)$ be the $p$-capacitary curvature measure (generated by the closure $bar{Omega}$ of $Omega$) on the unit circle $mathbb S^1$. This paper shows
We consider the geodesic X-ray transform acting on solenoidal tensor fields on a compact simply connected manifold with strictly convex boundary and non-positive curvature. We establish a stability estimate of the form $L^2mapsto H^{1/2}_{T}$, where
In topological data analysis, persistent homology is used to study the shape of data. Persistent homology computations are completely characterized by a set of intervals called a bar code. It is often said that the long intervals represent the topolo
We introduce a parametrized notion of genericity for Delaunay triangulations which, in particular, implies that the Delaunay simplices of $delta$-generic point sets are thick. Equipped with this notion, we study the stability of Delaunay triangulatio
We describe a general family of curved-crease folding tessellations consisting of a repeating lens motif formed by two convex curved arcs. The third author invented the first such design in 1992, when he made both a sketch of the crease pattern and a