ترغب بنشر مسار تعليمي؟ اضغط هنا

Prescribing capacitary curvature measures on planar convex domains

58   0   0.0 ( 0 )
 نشر من قبل J. Xiao
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف J. Xiao




اسأل ChatGPT حول البحث

For $pin (1,2]$ and a bounded, convex, nonempty, open set $Omegasubsetmathbb R^2$ let $mu_p(bar{Omega},cdot)$ be the $p$-capacitary curvature measure (generated by the closure $bar{Omega}$ of $Omega$) on the unit circle $mathbb S^1$. This paper shows that such a problem of prescribing $mu_p$ on a planar convex domain: Given a finite, nonnegative, Borel measure $mu$ on $mathbb S^1$, find a bounded, convex, nonempty, open set $Omegasubsetmathbb R^2$ such that $dmu_p(bar{Omega},cdot)=dmu(cdot)$ is solvable if and only if $mu$ has centroid at the origin and its support $mathrm{supp}(mu)$ does not comprise any pair of antipodal points. And, the solution is unique up to translation. Moreover, if $dmu_p(bar{Omega},cdot)=psi(cdot),dell(cdot)$ with $psiin C^{k,alpha}$ and $dell$ being the standard arc-length element on $mathbb S^1$, then $partialOmega$ is of $C^{k+2,alpha}$.

قيم البحث

اقرأ أيضاً

130 - Meijun Zhu 2014
In this paper we formulate new curvature functions on $mathbb{S}^n$ via integral operators. For certain even orders, these curvature functions are equivalent to the classic curvature functions defined via differential operators, but not for all even orders. Existence result for antipodally symmetric prescribed curvature functions on $mathbb{S}^n$ is obtained. As a corollary, the existence of a conformal metric for an antipodally symmetric prescribed $Q-$curvature functions on $mathbb{S}^3$ is proved. Curvature function on general compact manifold as well as the conformal covariance property for the corresponding integral operator are also addressed, and a general Yamabe type problem is proposed.
We discuss $C^1$ regularity and developability of isometric immersions of flat domains into $mathbb R^3$ enjoying a local fractional Sobolev $W^{1+s, frac2s}$ regularity for $2/3 le s< 1 $, generalizing the known results on Sobolev and Holder regimes . Ingredients of the proof include analysis of the weak Codazzi-Mainardi equations of the isometric immersions and study of $W^{2,frac2s}$ planar deformations with symmetric Jacobian derivative and vanishing distributional Jacobian determinant. On the way, we also show that the distributional Jacobian determinant, conceived as an operator defined on the Jacobian matrix, behaves like determinant of gradient matrices under products by scalar functions.
We show that convex viscosity solutions of the Lagrangian mean curvature equation are regular if the Lagrangian phase has Holder continuous second derivatives.
We address the problem of curvature estimation from sampled compact sets. The main contribution is a stability result: we show that the gaussian, mean or anisotropic curvature measures of the offset of a compact set K with positive $mu$-reach can be estimated by the same curvature measures of the offset of a compact set K close to K in the Hausdorff sense. We show how these curvature measures can be computed for finite unions of balls. The curvature measures of the offset of a compact set with positive $mu$-reach can thus be approximated by the curvature measures of the offset of a point-cloud sample. These results can also be interpreted as a framework for an effective and robust notion of curvature.
187 - Herve Gaussier 2013
We give a necessary complex geometric condition for a bounded smooth convex domain in Cn, endowed with the Kobayashi distance, to be Gromov hyperbolic. More precisely, we prove that if a smooth bounded convex domain contains an analytic disk in its b oundary, then the domain is not Gromov hyperbolic for the Kobayashi distance. We also provide examples of bounded smooth convex domains that are not strongly pseudoconvex but are Gromov hyperbolic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا