ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Window of Exploration in the Mass Spectrum: Strong Lensing by Galaxy Groups in the SL2S

42   0   0.0 ( 0 )
 نشر من قبل Marceau Limousin
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The existence of strong lensing systems with Einstein radii (Re) covering the full mass spectrum, from ~1-2 (produced by galaxy scale dark matter haloes) to >10 (produced by galaxy cluster scale haloes) have long been predicted. Many lenses with Re around 1-2 and above 10 have been reported but very few in between. In this article, we present a sample of 13 strong lensing systems with Re in the range 3- 8, i.e. systems produced by galaxy group scale dark matter haloes, spanning a redshift range from 0.3 to 0.8. This opens a new window of exploration in the mass spectrum, around 10^{13}- 10^{14} M_{sun}, which is a crucial range for understanding the transition between galaxies and galaxy clusters. Our analysis is based on multi-colour CFHTLS images complemented with HST imaging and ground based spectroscopy. Large scale properties are derived from both the light distribution of the elliptical galaxies group members and weak lensing of the faint background galaxy population. On small scales, the strong lensing analysis yields Einstein radii between 2.5 and 8. On larger scales, the strong lenses coincide with the peak of the light distribution, suggesting that mass is traced by light. Most of the luminosity maps have complicated shapes, indicating that these intermediate mass structures are dynamically young. Fitting the reduced shear with a Singular Isothermal Sphere, we find sigma ~ 500 km/s and an upper limit of ~900 km/s for the whole sample. The mass to light ratio for the sample is found to be M/L_i ~ 250 (solar units, corrected for evolution), with an upper limit of 500. This can be compared to mass to light ratios of small groups (with sigma ~ 300 km/s and galaxy clusters with sigma > 1000 km/s, thus bridging the gap between these mass scales.

قيم البحث

اقرأ أيضاً

62 - T. Verdugo , V. Motta , G. Foex 2014
We analyzed the Einstein radius, $theta_E$, in our sample of SL2S galaxy groups, and compared it with $R_A$ (the distance from the arcs to the center of the lens), using three different approaches: 1.- the velocity dispersion obtained from weak lensi ng assuming a Singular Isothermal Sphere profile ($theta_{E,I}$), 2.- a strong lensing analytical method ($theta_{E,II}$) combined with a velocity dispersion-concentration relation derived from numerical simulations designed to mimic our group sample, 3.- strong lensing modeling ($theta_{E,III}$) of eleven groups (with four new models presented in this work) using HST and CFHT images. Finally, $R_A$ was analyzed as a function of redshift $z$ to investigate possible correlations with L, N, and the richness-to-luminosity ratio (N/L). We found a correlation between $theta_{E}$ and $R_A$, but with large scatter. We estimate $theta_{E,I}$ = (2.2 $pm$ 0.9) + (0.7 $pm$ 0.2)$R_A$, $theta_{E,II}$ = (0.4 $pm$ 1.5) + (1.1 $pm$ 0.4)$R_A$, and $theta_{E,III}$ = (0.4 $pm$ 1.5) + (0.9 $pm$ 0.3)$R_A$ for each method respectively. We found a weak evidence of anti-correlation between $R_A$ and $z$, with Log$R_A$ = (0.58$pm$0.06) - (0.04$pm$0.1)$z$, suggesting a possible evolution of the Einstein radius with $z$, as reported previously by other authors. Our results also show that $R_A$ is correlated with L and N (more luminous and richer groups have greater $R_A$), and a possible correlation between $R_A$ and the N/L ratio. Our analysis indicates that $R_A$ is correlated with $theta_E$ in our sample, making $R_A$ useful to characterize properties like L and N (and possible N/L) in galaxy groups. Additionally, we present evidence suggesting that the Einstein radius evolves with $z$.
The cold dark matter scenario predicts that a large number of dark subhalos should be located within the halo of each Milky-way sized galaxy. One tell-tale signature of such dark subhalos could be additional milliarcsecond-scale image splitting of qu asars previously known to be multiply-imaged on arcsecond scales. Here, we estimate the image separations for the subhalo density profiles favoured by recent N-body simulations, and compare these to the angular resolution of both existing and upcoming observational facilities. We find, that the image separations produced are very sensitive to the exact subhalo density profile assumed, but in all cases considerably smaller than previous estimates based on the premise that subhalos can be approximated by singular isothermal spheres. Only the most optimistic subhalo models produce image separations that would be detectable with current technology, and many models produce image separations that will remain unresolved with all telescopes expected to become available in the foreseeable future. Detections of dark subhalos through image-splitting effects will therefore be far more challenging than currently believed, albeit not necessarily impossible.
Galaxy group masses are important to relate these systems with the dark matter halo hosts. However, deriving accurate mass estimates is particularly challenging for low-mass galaxy groups. Moreover, calibration of bservational mass-proxies using weak -lensing estimates have been mainly focused on massive clusters. We present here a study of halo masses for a sample of galaxy groups identified according to a spectroscopic catalogue, spanning a wide mass range. The main motivation of our analysis is to assess mass estimates provided by the galaxy group catalogue derived through an abundance matching luminosity technique. We derive total halo mass estimates according to a stacking weak-lensing analysis. Our study allows to test the accuracy of mass estimates based on this technique as a proxy for the halo masses of large group samples. Lensing profiles are computed combining the groups in different bins of abundance matching mass, richness and redshift. Fitted lensing masses correlate with the masses obtained from abundance matching. However, when considering groups in the low- and intermediate-mass ranges, masses computed according to the characteristic group luminosity tend to predict higher values than the determined by the weak-lensing analysis. The agreement improves for the low-mass range if the groups selected have a central early-type galaxy. Presented results validate the use of mass estimates based on abundance matching techniques which provide good proxies to the halo host mass in a wide mass range.
We use galaxy-galaxy lensing to study the dark matter halos surrounding a sample of Locally Brightest Galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central ga laxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their halos, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, $10.3 < log [M_*/M_odot] < 11.6$, we find that passive central galaxies have halos that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds $3sigma$ for $log [M_*/M_odot] > 10.7$. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type-dependence.
I report discovery of a new galaxy-scale gravitational lens system, identified using public data from the MaNGA survey, as part of a systematic search for lensed background line-emitters. The lens is SDSS J170124.01+372258.0, a giant elliptical galax y with velocity dispersion $sigma=256$ km/s, at a redshift of $z_l=0.122$. After modelling and subtracting the target galaxy light, the integral-field data-cube reveals [OII], [OIII] and H$beta$ emission lines corresponding to a source at $z_s=0.791$, forming an identifiable ring around the galaxy center. The Einstein radius is $R_{Ein} approx 2.3$ arcsec, projecting to ~5 kpc at the distance of the lens. The total projected lensing mass is $(3.6pm0.6) times 10^{11} M_odot$, and the total J-band mass-to-light ratio is $3.0pm0.7$ solar units. Plausible estimates of the likely dark matter content could reconcile this with a Milky-Way-like initial mass function (for which M/L~1.5 is expected), but heavier IMFs are by no means excluded with the present data. An alternative interpretation of the system, with a more complex source plane, is also discussed. The discovery of this system bodes well for future lens searches based on MaNGA and other integral-field spectroscopic surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا