ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong lensing by subhalos in the dwarf-galaxy mass range I: Image separations

34   0   0.0 ( 0 )
 نشر من قبل Erik Zackrisson
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cold dark matter scenario predicts that a large number of dark subhalos should be located within the halo of each Milky-way sized galaxy. One tell-tale signature of such dark subhalos could be additional milliarcsecond-scale image splitting of quasars previously known to be multiply-imaged on arcsecond scales. Here, we estimate the image separations for the subhalo density profiles favoured by recent N-body simulations, and compare these to the angular resolution of both existing and upcoming observational facilities. We find, that the image separations produced are very sensitive to the exact subhalo density profile assumed, but in all cases considerably smaller than previous estimates based on the premise that subhalos can be approximated by singular isothermal spheres. Only the most optimistic subhalo models produce image separations that would be detectable with current technology, and many models produce image separations that will remain unresolved with all telescopes expected to become available in the foreseeable future. Detections of dark subhalos through image-splitting effects will therefore be far more challenging than currently believed, albeit not necessarily impossible.

قيم البحث

اقرأ أيضاً

We investigate the possibility of applying machine learning techniques to images of strongly lensed galaxies to detect a low mass cut-off in the spectrum of dark matter sub-halos within the lens system. We generate lensed images of systems containing substructure in seven different categories corresponding to lower mass cut-offs ranging from $10^9M_odot$ down to $10^6M_odot$. We use convolutional neural networks to perform a multi-classification sorting of these images and see that the algorithm is able to correctly identify the lower mass cut-off within an order of magnitude to better than 93% accuracy.
We present a parametric strong lensing modeling of the galaxy cluster MS,0440.5+0204 (located at $z$ = 0.19). We have performed a strong lensing mass reconstruction of the cluster using three different models. The first model uses the image positions of four multiple imaged systems (providing 26 constraints). The second one combines strong lensing constraints with dynamical information (velocity dispersion) of the cluster. The third one uses the mass calculated from weak lensing as an additional constraint. Our three models reproduce equally well the image positions of the arcs, with a root-mean-square image equal to $approx$0.5$arcsec$. However, in the third model, the inclusion of the velocity dispersion and the weak-lensing mass allows us to obtain better constraints in the scale radius and the line-of-sight velocity dispersion of the mass profile. For this model, we obtain $r_s$ = 132$^{+30}_{-32}$ kpc, $sigma_s$ = 1203$^{+46}_{-47}$ km s$^{-1}$, M$_{200}$ = 3.1$^{+0.6}_{-0.6}$ $times10^{14}$,M$_{odot}$, and a high concentration, $c_{200}$ = 9.9$^{+2.2}_{-1.4}$. Finally, we used our derived mass profile to calculate the mass up to 1.5 Mpc. We compare it with X-ray estimates previously reported, finding a good agreement.
We develop a machine learning model to detect dark substructure (subhalos) within simulated images of strongly lensed galaxies. Using the technique of image segmentation, we turn the task of identifying subhalos into a classification problem where we label each pixel in an image as coming from the main lens, a subhalo within a binned mass range, or neither. Our network is only trained on images with a single smooth lens and either zero or one subhalo near the Einstein ring. On a test set of noiseless simulated images with a single subhalo, the network is able to locate subhalos with a mass of $10^{8} M_{odot}$ and place them in the correct or adjacent mass bin, effectively detecting them 97% of the time. For this test set, the network detects subhalos down to masses of $10^{6} M_{odot}$ at 61% accuracy. However, noise limits the sensitivity to light subhalo masses. With 1% noise (with this level of noise, the distribution of signal-to-noise in the image pixels approximates that of images from the Hubble Space Telescope for sources with magnitude $< 20$), a subhalo with mass $10^{8.5}M_{odot}$ is detected 86% of the time, while subhalos with masses of $10^{8}M_{odot}$ are only detected 38% of the time. Furthermore, the model is able to generalize to new contexts it has not been trained on, such as locating multiple subhalos with varying masses, subhalos far from the Einstein ring, or more than one large smooth lens.
75 - M. Bradac 2004
Weak gravitational lensing is considered to be one of the most powerful tools to study the mass and the mass distribution of galaxy clusters. However, the mass-sheet degeneracy transformation has limited its success. We present a novel method for a c luster mass reconstruction which combines weak and strong lensing information on common scales and can, as a consequence, break the mass-sheet degeneracy. We extend the weak lensing formalism to the inner parts of the cluster and combine it with the constraints from multiple image systems. We demonstrate the feasibility of the method with simulations, finding an excellent agreement between the input and reconstructed mass also on scales within and beyond the Einstein radius. Using a single multiple image system and photometric redshift information of the background sources used for weak and strong lensing analysis, we find that we are effectively able to break the mass-sheet degeneracy, therefore removing one of the main limitations on cluster mass estimates. We conclude that with high resolution (e.g. HST) imaging data the method can more accurately reconstruct cluster masses and their profiles than currently existing lensing techniques.
The existence of strong lensing systems with Einstein radii (Re) covering the full mass spectrum, from ~1-2 (produced by galaxy scale dark matter haloes) to >10 (produced by galaxy cluster scale haloes) have long been predicted. Many lenses with Re a round 1-2 and above 10 have been reported but very few in between. In this article, we present a sample of 13 strong lensing systems with Re in the range 3- 8, i.e. systems produced by galaxy group scale dark matter haloes, spanning a redshift range from 0.3 to 0.8. This opens a new window of exploration in the mass spectrum, around 10^{13}- 10^{14} M_{sun}, which is a crucial range for understanding the transition between galaxies and galaxy clusters. Our analysis is based on multi-colour CFHTLS images complemented with HST imaging and ground based spectroscopy. Large scale properties are derived from both the light distribution of the elliptical galaxies group members and weak lensing of the faint background galaxy population. On small scales, the strong lensing analysis yields Einstein radii between 2.5 and 8. On larger scales, the strong lenses coincide with the peak of the light distribution, suggesting that mass is traced by light. Most of the luminosity maps have complicated shapes, indicating that these intermediate mass structures are dynamically young. Fitting the reduced shear with a Singular Isothermal Sphere, we find sigma ~ 500 km/s and an upper limit of ~900 km/s for the whole sample. The mass to light ratio for the sample is found to be M/L_i ~ 250 (solar units, corrected for evolution), with an upper limit of 500. This can be compared to mass to light ratios of small groups (with sigma ~ 300 km/s and galaxy clusters with sigma > 1000 km/s, thus bridging the gap between these mass scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا