ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutral H density at the termination shock: a consolidation of recent results

55   0   0.0 ( 0 )
 نشر من قبل Maciej Bzowski
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Bzowski




اسأل ChatGPT حول البحث

We discuss a consolidation of determinations of the density of neutral interstellar H at the nose of the termination shock carried out with the use of various data sets, techniques, and modeling approaches. In particular, we focus on the determination of this density based on observations of H pickup ions on Ulysses during its aphelion passage through the ecliptic plane. We discuss in greater detail a novel method of determination of the density from these measurements and review the results from its application to actual data. The H density at TS derived from this analysis is equal to 0.087 pm 0.022 cm-3, and when all relevant determinations are taken into account, the consolidated density is obtained at 0.09 pm 0.022 cm-3. The density of H in CHISM based on literature values of filtration factor is then calculated at 0.16 pm 0.04 cm-3.

قيم البحث

اقرأ أيضاً

Solar ionizing factors are responsible for modulation of interstellar neutral gas and its derivative populations inside the heliosphere. We provide an overview of the current state of knowledge about them for heliospheric particles inside the termina tion shock. We discuss charge exchange with solar wind particles, photoionization, and electron impact ionization for hydrogen, oxygen, neon, and helium from 1985 to 2018 both in the ecliptic plane and in the polar regions. We discuss ionization rates as a function of time, distance to the Sun, and latitude. We compare the total ionization rates among the species within a consistent and homogeneous system of calculation of the ionization rates. The highest total ionization rates at 1 au in the ecliptic plane are for hydrogen and oxygen, and the lowest are for helium. In the polar regions, the strongest ionization losses are for oxygen, regardless of the solar activity. Photoionization is the dominant ionization reaction for helium and neon, and a reaction of high significance for oxygen. Charge exchange with solar wind particles is the dominant ionization reaction for hydrogen and the second important ionization reaction for oxygen. Electron impact ionization is an important ionization reaction for Ne and He, with the contribution to the total ionization rates stronger within 1 au and smaller outside. The total ionization rates for He and Ne vary in time with the solar activity, whereas the total ionization rates for H and O follow the cyclic solar wind variations out of the ecliptic plane and aperiodic variations in the ecliptic plane.
151 - Takahiro Fusayasu 2001
High-Q^2 NC and CC DIS cross sections have been measured by H1 and ZEUS at HERA. Both NC and CC results based on data taken during the year 1994-2000 are in good agreement with Standard Model expectations. The structure function xF_3 is extracted fro m the NC cross sections and the mass of the W propagator is extracted from the CC cross sections. Valence quark distributions are derived by means of an NLO QCD fit.
66 - Bin Chen 2015
Solar flares - the most powerful explosions in the solar system - are also efficient particle accelerators, capable of energizing a large number of charged particles to relativistic speeds. A termination shock is often invoked in the standard model o f solar flares as a possible driver for particle acceleration, yet its existence and role have remained controversial. We present observations of a solar flare termination shock and trace its morphology and dynamics using high-cadence radio imaging spectroscopy. We show that a disruption of the shock coincides with an abrupt reduction of the energetic electron population. The observed properties of the shock are well-reproduced by simulations. These results strongly suggest that a termination shock is responsible, at least in part, for accelerating energetic electrons in solar flares.
70 - M. Lemoine 2016
Successful phenomenological models of pulsar wind nebulae assume efficient dissipation of the Poynting flux of the magnetized electron-positron wind as well as efficient acceleration of the pairs in the vicinity of the termination shock, but how this is realized is not yet well understood. The present paper suggests that the corrugation of the termination shock, at the onset of non-linearity, may lead towards the desired phenomenology. Non-linear corrugation of the termination shock would convert a fraction of order unity of the incoming ordered magnetic field into downstream turbulence, slowing down the flow to sub-relativistic velocities. The dissipation of turbulence would further preheat the pair population on short length scales, close to equipartition with the magnetic field, thereby reducing the initial high magnetization to values of order unity. Furthermore, it is speculated that the turbulence generated by the corrugation pattern may sustain a relativistic Fermi process, accelerating particles close to the radiation reaction limit, as observed in the Crab nebula. The required corrugation could be induced by the fast magnetosonic modes of downstream nebular turbulence; but it could also be produced by upstream turbulence, either carried by the wind or seeded in the precursor by the accelerated particles themselves.
129 - Lianjin Wu 2020
BESIII experiment has collected about 20 fb$^{-1}$ luminosity data between $sqrt{s}=3.8$ and 4.7 GeV via $e^{+}e^{-}$ collision. In this talk, we present the recent $XYZ$ results at BESIII, including mass and width measurements of $Y(4220)$, search f or $Y$ states with rare decay modes, isospin parity determination of $Z_{c}^{0}(3900)$ as well as the mass and width determination, and search for new decay modes of $X(3872)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا