ترغب بنشر مسار تعليمي؟ اضغط هنا

Interstellar Neutral Gas Species And Their Pickup Ions Inside The Heliospheric Termination Shock. Ionization Rates For H, O, Ne, And He

60   0   0.0 ( 0 )
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar ionizing factors are responsible for modulation of interstellar neutral gas and its derivative populations inside the heliosphere. We provide an overview of the current state of knowledge about them for heliospheric particles inside the termination shock. We discuss charge exchange with solar wind particles, photoionization, and electron impact ionization for hydrogen, oxygen, neon, and helium from 1985 to 2018 both in the ecliptic plane and in the polar regions. We discuss ionization rates as a function of time, distance to the Sun, and latitude. We compare the total ionization rates among the species within a consistent and homogeneous system of calculation of the ionization rates. The highest total ionization rates at 1 au in the ecliptic plane are for hydrogen and oxygen, and the lowest are for helium. In the polar regions, the strongest ionization losses are for oxygen, regardless of the solar activity. Photoionization is the dominant ionization reaction for helium and neon, and a reaction of high significance for oxygen. Charge exchange with solar wind particles is the dominant ionization reaction for hydrogen and the second important ionization reaction for oxygen. Electron impact ionization is an important ionization reaction for Ne and He, with the contribution to the total ionization rates stronger within 1 au and smaller outside. The total ionization rates for He and Ne vary in time with the solar activity, whereas the total ionization rates for H and O follow the cyclic solar wind variations out of the ecliptic plane and aperiodic variations in the ecliptic plane.

قيم البحث

اقرأ أيضاً

We study the distribution of the interstellar neutral (ISN) gas density and the pick-up ion (PUI) density of hydrogen, helium, neon, and oxygen in the heliosphere for heliocentric distances from inside 1 au up to the solar wind termination shock (TS) , both in and out of the ecliptic plane. We discuss similarities and differences in the large-scale structures of the ISN gas and PUIs formed in the heliosphere between various species. We discuss the distribution of ISN gas and PUI densities for two extreme phases of the solar activity cycle, it is the solar minimum and the solar maximum. We identify the location of the ISN gas density cavity of various species. We study the relative abundance ratios of Ne/O, H/He, Ne/He, and O/He for ISN gas and PUIs densities and their variation with location in the heliosphere. We also discuss the modulation of relative abundance ratios of ISN gas and PUIs along the TS. We conclude that the preferable locations for detection of He$^+$ and Ne$^+$ PUIs are in the downwind hemisphere within 1~au, whereas for H$^+$ and O$^+$ PUIs the preferable locations for detection are for distances from Jupiter to Pluto orbits.
We provide the first direct observations of interstellar H+ and He+ pickup ions in the solar wind from 22 AU to 38 AU. We use the Vasyliunas and Siscoe model functional form to quantify the pickup ion distributions, and while the fit parameters gener ally lie outside their physically expected ranges, this form allows fits that quantify variations in the pickup H+ properties with distance. By ~20 AU, the pickup ions already provide the dominant internal pressure in the solar wind. We determine the radial trends and extrapolate them to the termination shock at ~90 AU, where the pickup H+ to core solar wind density reaches ~0.14. The pickup H+ temperature and thermal pressure increase from 22-38 AU, indicating additional heating of the pickup ions. This produces very large extrapolated ratios of pickup H+ to solar wind temperature and pressure and an extrapolated ratio of the pickup ion pressure to the solar wind dynamic pressure at the termination shock of ~0.16. Such a large ratio has profound implications for moderating the termination shock and the overall outer heliospheric interaction. We also identify suprathermal tails in the H+ spectra and complex features in the He+ spectra, likely indicating variations in the pickup ion history and processing. Finally, we discover enhancements in both H+ and He+ populations just below their cutoff energies, which may be associated with enhanced local pickup. This study serves to document the release and as the citable reference of these pickup ion data for broad community use and analysis.
55 - M. Bzowski 2008
We discuss a consolidation of determinations of the density of neutral interstellar H at the nose of the termination shock carried out with the use of various data sets, techniques, and modeling approaches. In particular, we focus on the determinatio n of this density based on observations of H pickup ions on Ulysses during its aphelion passage through the ecliptic plane. We discuss in greater detail a novel method of determination of the density from these measurements and review the results from its application to actual data. The H density at TS derived from this analysis is equal to 0.087 pm 0.022 cm-3, and when all relevant determinations are taken into account, the consolidated density is obtained at 0.09 pm 0.022 cm-3. The density of H in CHISM based on literature values of filtration factor is then calculated at 0.16 pm 0.04 cm-3.
We report on a direct method to measure the internuclear potential energy curve of diatomic systems. A COLTRIMS reaction microscope was used to measure the squares of the vibrational wave functions of H$_{2}$, He$_{2}$, Ne$_{2}$, and Ar$_{2}$. The Sc hrodinger equation relates the curvature of the wave function to the potential V(R) and therefore offers a simple but elegant way to extract the shape of the potential.
In the vicinity of Europa, Galileo observed bursty Alfven-cyclotron wave power at the gyrofrequencies of a number of species including K$^+$, O$_2^+$, Na$^+$, and Cl$^+$, indicating the localised pickup of these species. Additional evidence for the p resence of chlorine was the occurrence of both left-hand (LH) and right-hand (RH) polarized transverse wave power near the Cl$^{+}$ gyrofrequency, thought to be due to the pickup of both Cl$^+$ and the easily formed chlorine anion, Cl$^-$. To test this hypothesis we use one-dimensional hybrid (kinetic ion, massless fluid electron) simulations for both positive and negative pickup ions and self-consistently reproduce the growth of both LH and RH Alfven-cyclotron waves in agreement with linear theory. We show how the simultaneous generation of LH and RH waves can result in nongyrotropic ion distributions and increased wave amplitudes, and how even trace quantities of negative pickup ions are able to generate an observable RH signal. Through comparing simulated and observed wave amplitudes, we are able to place the first constraints on the densities of chlorine pickup ions in localised regions at Europa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا