ﻻ يوجد ملخص باللغة العربية
Via computer simulations, we demonstrate how a densely grafted layer of polymers, a {it brush}, could be turned into an efficient switch through chemical modification of some of its end-monomers. In this way, a surface coating with reversibly switchable properties can be constructed. We analyze the fundamental physical principle behind its function, a recently discovered surface instability, and demonstrate that the combination of a high grafting density, an inflated end-group size and a high degree of monodispersity are conditions for an optimal functionality of the switch.
In recent years there have been a number of proposals to utilize the specificity of DNA based interactions for potential applications in nanoscience. One interesting direction is the self-assembly of micro- and nanoparticle clusters using DNA scaffol
The world is changing at an ever-increasing pace. And it has changed in a much more fundamental way than one would think, primarily because it has become more connected and interdependent than in our entire history. Every new product, every new inven
Given two copies of any quantum mechanical system, one may want to prepare them in the thermofield double state for the purpose of studying thermal physics or black holes. However, the thermofield double is a unique entangled pure state and may be di
Cosmic voids provide a powerful probe of the origin and evolution of structures in the Universe because their dynamics can remain near-linear to the present day. As a result they have the potential to connect large scale structure at late times to ea
The structure of spherical micelles of the diblock copolymer poly(styrene-block-acrylic acid) in water was investigated with small angle neutron scattering (SANS) and contrast matching. We have monitored inter-micelle correlation and the extension of