ترغب بنشر مسار تعليمي؟ اضغط هنا

Do Spherical Polyelectrolyte Brushes Interdigitate?

94   0   0.0 ( 0 )
 نشر من قبل Stefan Egelhaaf
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. V. Korobko




اسأل ChatGPT حول البحث

The structure of spherical micelles of the diblock copolymer poly(styrene-block-acrylic acid) in water was investigated with small angle neutron scattering (SANS) and contrast matching. We have monitored inter-micelle correlation and the extension of the polyelectrolyte chains in the coronal layer through the overlap concentration. Irrespective of ionic strength, the corona shrinks with increasing packing fraction. Furthermore, at high charge and minimal screening conditions, the corona layers interpenetrate once the volume fraction exceeds the critical value 0.53.



قيم البحث

اقرأ أيضاً

A coarse grained model for flexible polymers end-grafted to repulsive spherical nanoparticles is studied for various chain lengths and grafting densities under good solvent conditions, by Molecular Dynamics methods and density functional theory. With increasing chain length the monomer density profile exhibits a crossover to the star polymer limit. The distribution of polymer ends and the linear dimensions of individual polymer chains are obtained, while the inhomogeneous stretching of the chains is characterized by the local persistence lengths. The results on the structure factor of both single chain and full spherical brush as well as the range of applicability of the different theoretical tools are presented. Eventually an outlook on experiments is given.
We study the adsorption of charged patchy particle models (CPPMs) on a thin film of a like-charged and dense polyelectrolyte (PE) brush (of 50 monomers per chain) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our previously introduced set of CPPMs embraces well-defined one-, and two-patched spherical globules, each of the same net charge and (nanometer) size, with mono- and multipole moments comparable to those of small globular proteins. We focus on electrostatic effects on the adsorption far away from the isoelectric point of typical proteins, i.e., where charge regulation plays no role. Despite the same net charge of the brush and globule we observe large binding affinities up to tens of the thermal energy, kT, which are enhanced by decreasing salt concentration and increasing charge of the patch(es). Our analysis of the distance-resolved potentials of mean force together with a phenomenological description of all leading interaction contributions shows that the attraction is strongest at the brush surface, driven by multipolar, Born (self-energy), and counterion-release contributions, dominating locally over the monopolar and steric repulsions.
The transport of polyelectrolytes confined by oppositely charged surfaces and driven by a constant electric field is of interest in studies of DNA separation according to size. Using molecular dynamics simulations that include surface polarization ef fect, we find that the mobilities of the polyelectrolytes and their counterions change non-monotonically with the confinement surface charge density. For an optimum value of the confinement charge density, efficient separation of polyelectrolytes can be achieved over a wide range of polyelectrolyte charge due to the differential friction imparted by the oppositely charged confinement on the polyelectrolyte chains. Furthermore, by altering the placement of the charged confinement counterions, enhanced polyelectrolyte separation can be achieved by utilizing surface polarization effect due to dielectric mismatch between the media inside and outside the confinement.
A comparative simulation study of polymer brushes formed by grafting at a planar surface either flexible linear polymers (chain length $N_L$) or (non-catenated) ring polymers (chain length $N_R=2 N_L$) is presented. Two distinct off-lattice models ar e studied, one by Monte Carlo methods, the other by Molecular Dynamics, using a fast implementation on graphics processing units (GPUs). It is shown that the monomer density profiles $rho(z)$ in the $z$-direction perpendicular to the surface for rings and linear chains are practically identical, $rho_R(2 N_L, z)=rho_L(N_L, z)$. The same applies to the pressure, exerted on a piston at hight z, as well. While the gyration radii components of rings and chains in $z$-direction coincide, too, and increase linearly with $N_L$, the transverse components differ, even with respect to their scaling properties: $R_{gxy}^{(L)} propto N_L^{1/2}$, $R_{gxy}^{(R)} propto N_L^{0.4}$. These properties are interpreted in terms of the statistical properties known for ring polymers in dense melts.
Within the framework of the Helfrich elastic theory of membranes and of differential geometry we study the possible instabilities of spherical vesicles towards double bubbles. We find that not only temperature, but also magnetic fields can induce top ological transformations between spherical vesicles and double bubbles and provide a phase diagram for the equilibrium shapes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا