ترغب بنشر مسار تعليمي؟ اضغط هنا

Space Weathering on Near-Earth Objects investigated by neutral-particle detection

202   0   0.0 ( 0 )
 نشر من قبل Christina Plainaki
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ion-sputtering (IS) process is active in many planetary environments in the Solar System where plasma precipitates directly on the surface (for instance, Mercury, Moon, Europa). In particular, solar-wind sputtering is one of the most important agents for the surface erosion of a Near-Earth Object (NEO), acting together with other surface release processes, such as Photon Stimulated Desorption (PSD), Thermal Desorption (TD) and Micrometeoroid Impact Vaporization (MIV). The energy distribution of the IS-released neutrals peaks at a few eVs and extends up to hundreds of eVs. Since all other release processes produce particles of lower energies, the presence of neutral atoms in the energy range above 10 eV and below a few keVs (Sputtered High-Energy Atoms - SHEA) identifies the IS process. SHEA easily escape from the NEO, due to NEOs extremely weak gravity. Detection and analysis of SHEA will give important information on surface-loss processes as well as on surface elemental composition. The investigation of the active release processes, as a function of the external conditions and the NEO surface properties, is crucial for obtaining a clear view of the bodys present loss rate as well as for getting clues on its evolution, which depends significantly on space weather. In this work, an attempt to analyze the processes that take place on the surface of these small airless bodies, as a result of their exposure to the space environment, has been realized. For this reason a new space weathering model (Space Weathering on NEO - SPAWN), is presented. Moreover, an instrument concept of a neutral-particle analyzer specifically designed for the measurement of neutral density and the detection of SHEA from a NEO is proposed

قيم البحث

اقرأ أيضاً

Phase reddening is an effect that produces an increase of the spectral slope and variations in the strength of the absorption bands as the phase angle increases. In order to understand its effect on spectroscopic observations of asteroids, we have an alyzed the visible and near-infrared spectra (0.45-2.5 mu m) of 12 near-Earth asteroids observed at different phase angles. All these asteroids are classified as either S-complex or Q-type asteroids. In addition, we have acquired laboratory spectra of three different types of ordinary chondrites at phase angles ranging from 13degree to 120degree. We have found that both asteroid and meteorite spectra show an increase in band depths with increasing phase angle. The spectral slope of the ordinary chondrites spectra shows a significant increase with increasing phase angle for g > 30degree. Variations in band centers and band area ratio (BAR) values were also found, however they seems to have no significant impact on the mineralogical analysis. Our study showed that the increase in spectral slope caused by phase reddening is comparable to certain degree of space weathering. In particular, an increase in phase angle in the range of 30degree to 120degree will produce a reddening of the reflectance spectra equivalent to exposure times of ~ 0.1x10^6 to 1.3x10^6 years at about 1 AU from the Sun. Furthermore, we found that under some circumstances phase reddening could lead to an ambiguous taxonomic classification of asteroids.
98 - Ping Zhu , Zechen Wang , Jun Chen 2019
Magnetic reconnection processes in the near-Earth magnetotail can be highly 3-dimensional (3D) in geometry and dynamics, even though the magnetotail configuration itself is nearly two dimensional due to the symmetry in the dusk-dawn direction. Such r econnection processes can be induced by the 3D dynamics of nonlinear ballooning instability. In this work, we explore the global 3D geometry of the reconnection process induced by ballooning instability in the near-Earth magnetotail by examining the distribution of quasi-separatrix layers associated with plasmoid formation in the entire 3D domain of magnetotail configuration, using an algorithm previously developed in context of solar physics. The 3D distribution of quasi-separatrix layers (QSLs) as well as their evolution directly follows the plasmoid formation during the nonlinear development of ballooning instability in both time and space. Such a close correlation demonstrates a strong coupling between the ballooning and the corresponding reconnection processes. It further confirms the intrinsic 3D nature of the ballooning-induced plasmoid formation and reconnection processes, in both geometry and dynamics. In addition, the reconstruction of the 3D QSL geometry may provide an alternative means for identifying the location and timing of 3D reconnection sites in magnetotail from both numerical simulations and satellite observations.
The James Webb Space Telescope (JWST) has the potential to enhance our understanding of near-Earth objects (NEOs). We present results of investigations into the observability of NEOs given the nominal observing requirements of JWST on elongation (85- 135 degrees) and non-sidereal rates ($<$30mas/s). We find that approximately 75% of NEOs can be observed in a given year. However, observers will need to wait for appropriate observing windows. We find that JWST can easily execute photometric observations of meter-sized NEOs which will enhance our understanding of the small NEO population.
Thermal infrared observations are the most effective way to measure asteroid diameter and albedo for a large number of near-Earth objects. Major surveys like NEOWISE, NEOSurvey, ExploreNEOs, and NEOLegacy find a small fraction of high albedo objects that do not have clear analogs in the current meteorite population. About 8% of Spitzer-observed near-Earth objects have nominal albedo solutions greater than 0.5. This may be a result of lightcurve variability leading to an incorrect estimate of diameter or inaccurate absolute visual magnitudes. For a sample of 23 high albedo NEOs we do not find that their shapes are significantly different from the McNeill et al. (2019) near-Earth object shape distribution. We performed a Monte Carlo analysis on 1505 near-Earth objects observed by Spitzer, sampling the visible and thermal fluxes of all targets to determine the likelihood of obtaining a high albedo erroneously. Implementing the McNeill shape distribution for near-Earth objects, we provide an upper-limit on the geometric albedo of 0.5+/-0.1 for the near-Earth population.
Analysis of laboratory experiments simulating space weathering optical effects on atmosphereless planetary bodies reveals that the time needed to alter the spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope o f an S-type asteroid is about ~ 0.1 Myr. The time required to reduce the visible albedo of samples to ~ 0.05 is ~ 1 Myr. Since both these timescales are much less than the average collisional lifetime of asteroids larger than several kilometers in size, numerous low-albedo asteroids having reddish spectra with subdued absorption bands should be observed instead of an S-type dominated population. It is not the case because asteroid surfaces cannot be considered as undisturbed, unlike laboratory samples. We have estimated the number of collisions occurring in the time of 105 yr between asteroids and projectiles of various sizes and show that impact-activated motions of regolith particles counteract the progress of optical maturation of asteroid surfaces. Continual rejuvenation of asteroid surfaces by impacts does not allow bodies with the ordinary chondrite composition to be masked among S asteroids. Spectroscopic analysis, using relatively invariant spectral parameters, such as band centers and band area ratios, can determine whether the surface of an S asteroid has chondritic composition or not. Differences in the environment of the main asteroid belt versus that at 1 AU, and the physical difference between the Moon and main belt asteroids (i.e., size) can account for the lack of lunar-type weathering on main belt asteroids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا