ﻻ يوجد ملخص باللغة العربية
Finding the causes for the nonstatistical vibrational energy relaxation in the planar carbonyl sulfide (OCS) molecule is a longstanding problem in chemical physics: Not only is the relaxation incomplete long past the predicted statistical relaxation time, but it also consists of a sequence of abrupt transitions between long-lived regions of localized energy modes. We report on the phase space bottlenecks responsible for this slow and uneven vibrational energy flow in this Hamiltonian system with three degrees of freedom. They belong to a particular class of two-dimensional invariant tori which are organized around elliptic periodic orbits. We relate the trapping and transition mechanisms with the linear stability of these structures.
The role of the spatial structure of a turbulent flow in enhancing particle collision rates in suspensions is an open question. We show and quantify, as a function of particle inertia, the correlation between the multiscale structures of turbulence a
We introduce a heterodimer model in which multiple mechanisms of vibronic coupling and their impact on energy transfer can be explicitly studied. We consider vibronic coupling that arises through either Franck-Condon activity in which each site in th
We study the collective escape dynamics of a chain of coupled, weakly damped nonlinear oscillators from a metastable state over a barrier when driven by a thermal heat bath in combination with a weak, globally acting periodic perturbation. Optimal pa
The fundamentals and higher vibrationally excited states for the N$_3^+$ ion in its electronic ground state have been determined from quantum bound state calculations on 3-dimensional potential energy surfaces (PESs) at the CCSD(T)-F12 and MRCI+Q lev
For a small fraction of hot CO2 molecules immersed in a liquid-phase CO2 thermal bath, classical cavity molecular dynamics simulations show that forming collective vibrational strong coupling (VSC) between the C=O asymmetric stretch of CO2 molecules