ﻻ يوجد ملخص باللغة العربية
The role of the spatial structure of a turbulent flow in enhancing particle collision rates in suspensions is an open question. We show and quantify, as a function of particle inertia, the correlation between the multiscale structures of turbulence and particle collisions: Straining zones contribute predominantly to rapid head-on collisions compared to vortical regions. We also discover the importance of vortex-strain worm-rolls, which goes beyond ideas of preferential concentration and may explain the rapid growth of aggregates in natural processes, such as the initiation of rain in warm clouds.
We investigate the role of intense vortical structures, similar to those in a turbulent flow, in enhancing collisions (and coalescences) which lead to the formation of large aggregates in particle-laden flows. By using a Burgers vortex model, we show
Turbulence is the major cause of friction losses in transport processes and it is responsible for a drastic drag increase in flows over bounding surfaces. While much effort is invested into developing ways to control and reduce turbulence intensities
Conflict between formation of a cyclonic vortex and isotropization in forced homogeneous rotating turbulence is numerically investigated. It is well known that a large rotation rate of the system induces columnar vortices to result in quasi-two-dimen
Using complementary numerical approaches at high resolution, we study the late-time behaviour of an inviscid, incompressible two-dimensional flow on the surface of a sphere. Starting from a random initial vorticity field comprised of a small set of i
Lagrangian transport structures for three-dimensional and time-dependent fluid flows are of great interest in numerous applications, particularly for geophysical or oceanic flows. In such flows, chaotic transport and mixing can play important environ