ﻻ يوجد ملخص باللغة العربية
We observe a seemingly complex magnetic field dependence of dielectric constant of hexagonal YbMnO3 near the spin ordering temperature. After rescaling, the data taken at different temperatures and magnetic fields collapse on a single curve describing the sharp anomaly in nonlinear magnetoelectric response at the magnetic transition. We show that this anomaly is a result of the competition between two magnetic phases. The scaling and the shape of the anomaly are explained using the phenomenological Landau description of the competing phases in hexagonal manganites.
We report a theoretical study of the non-linear magnetoelectric response of GdFeO$_3$ through an analytical approach combined with a Heisenberg model which is fitted against first-principles calculations. Our theory reproduces the non-linear change o
The magnetoelectric effects in multiferroics have a great potential in creating next-generation memory devices. We conceive a new concept of non-volatile memories based on a type of nonlinear magnetoelectric effects showing a butterfly-shaped hystere
Metastable manganite perovskites displaying the antiferromagnetic so-called E-phase are predicted to be multiferroic. Due to the need of high-pressures for the synthesis of this phase, this prediction has only been confirmed in bulk HoMnO3. Here we r
Motivated by the nonlinear Hall effect observed in topological semimetals, we studied the photocurrent by the quantum kinetic equation. We recovered the shift current and injection current discovered by Sipe et al., and the nonlinear Hall current ind
We present a general method based on nonlinear response theory to obtain effective interactions between ions in an electron gas which can also be applied to other systems where an adiabatic separation of time-scales is possible. Nonlinear contributio