ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of nonlinear magnetoelectric response in rare-earth orthoferrite perovskite oxides

83   0   0.0 ( 0 )
 نشر من قبل Alireza Sasani
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a theoretical study of the non-linear magnetoelectric response of GdFeO$_3$ through an analytical approach combined with a Heisenberg model which is fitted against first-principles calculations. Our theory reproduces the non-linear change of polarization under applied magnetic field reported experimentally such that it allows to analyze the origin of the large responses in the different directions. We show that the non-linear character of the response in these materials originates from the fact that the antiferromagnetic order of Gd atoms changes non-linearly with respect to the applied magnetic field. Our model can be generalized to other materials in which the antiferromagnetic ordering breaks inversion symmetry.

قيم البحث

اقرأ أيضاً

Spin reorientation and magnetisation reversal are two important features of the rare-earth orthorhombic provskites ($RM$O$_{3}$s) that have attracted a lot of attention, though their exact microscopic origin has eluded researchers. Here, using densit y functional theory and classical atomistic spin dynamics we build a general Heisenberg magnetic model that allows to explore the whole phase diagram of the chromite and ferrite compounds and to scrutinize the microscopic mechanism responsible for spin reorientations and magnetisation reversals. We show that the occurrence of a magnetization reversal transition depends on the relative strength and sign of two interactions between rare-earth and transition-metal atoms: superexchange and Dzyaloshinsky-Moriya. We also conclude that the presence of a smooth spin reorientation transition between the so-called $Gamma_4$ and the $Gamma_2$ phases through a coexisting region, and the temperature range in which it occurs, depends on subtle balance of metal--metal (superexchange and Dzyaloshinsky-Moriya) and metal--rare-earth (Dzyaloshinsky-Moriya) couplings. In particular, we show that the intermediate coexistence region occurs because the spin sublattices rotate at different rates.
By the single crystal inelastic neutron scattering the orthoferrite HoFeO3 was studied. We show that the spin dynamics of the Fe subsystem does not change through the spin-reorientation transitions. The observed spectrum of magnetic excitations was a nalyzed in the frames of linear spin-wave theory. Within this approach the antiferromagnetic exchange interactions of nearest neighbors and next nearest neighbors were obtained for Fe subsystem. Parameters of Dzyaloshinskii-Moriya interactions at Fe subsystem were refined. The temperature dependence of the gap in Fe spin-wave spectrum indicates the temperature evolution of the anisotropy parameters. The estimations for the values of Fe-Ho and Ho-Ho exchange interaction were made as well.
We review recent studies of spin dynamics in rare-earth orthorhombic perovskite oxides of the type $RM$O$_3$, where $R$ is a rare-earth ion and $M$ is a transition-metal ion, using single-crystal inelastic neutron scattering (INS). After a short intr oduction to the magnetic INS technique in general, the results of INS experiments on both transition-metal and rare-earth subsystems for four selected compounds (YbFeO$_3$, TmFeO$_3$, YFeO$_3$, YbAlO$_3$) are presented. We show that the spectrum of magnetic excitations consists of two types of collective modes that are well separated in energy: gapped magnons with a typical bandwidth of $<$70 meV, associated with the antiferromagnetically (AFM) ordered transition-metal subsystem, and AFM fluctuations of $<$5 meV within the rare-earth subsystem, with no hybridization of those modes. We discuss the high-energy conventional magnon excitations of the 3$d$ subsystem only briefly, and focus in more detail on the spectacular dynamics of the rare-earth sublattice in these materials. We observe that the nature of the ground state and the low-energy excitation strongly depends on the identity of the rare-earth ion. In the case of non-Kramers ions, the low-symmetry crystal field completely eliminates the degeneracy of the multiplet state, creating a rich magnetic field-temperature phase diagram. In the case of Kramers ions, the resulting ground state is at least a doublet, which can be viewed as an effective quantum spin-1/2. Equally important is the fact that in Yb-based materials the nearest-neighbor exchange interaction dominates in one direction, despite the three-dimensional nature of the orthoperovskite crystal structure. The observation of a fractional spinon continuum and quantum criticality in YbAlO$_3$ demonstrates that Kramers rare-earth based magnets can provide realizations of various aspects of quantum low-dimensional physics.
With their broad range of magnetic, electronic and structural properties, transition metal perovskite oxides ABO3 have long served as a platform for testing condensed matter theories. In particular, their insulating character - found in most compound s - is often ascribed to dynamical electronic correlations through the celebrated Mott-Hubbard mechanism where gaping arises from a uniform, symmetry-preserving electron repulsion mechanism. However, structural distortions are ubiquitous in perovskites and their relevance with respect to dynamical correlations in producing this rich array of properties remains an open question. Here, we address the origin of band gap opening in the whole family of 3d perovskite oxides. We show that a single-determinant mean-field approach such as density functional theory (DFT) successfully describes the structural, magnetic and electronic properties of the whole series, at low and high temperatures. We find that insulation occurs via energy-lowering crystal symmetry reduction (octahedral rotations, Jahn-Teller and bond disproportionation effects), as well as intrinsic electronic instabilities, all lifting orbital degeneracies. Our work therefore suggests that whereas ABO3 oxides may be complicated, they are not necessarily strongly correlated. It also opens the way towards systematic investigations of doping and defect physics in perovskites, essential for the full realization of oxide-based electronics.
226 - L. Weymann , L. Bergen , Th. Kain 2020
Violation of time reversal and spatial inversion symmetries has profound consequences for elementary particles and cosmology. Spontaneous breaking of these symmetries at phase transitions gives rise to unconventional physical phenomena in condensed m atter systems, such as ferroelectricity induced by magnetic spirals, electromagnons, non-reciprocal propagation of light and spin waves, and the linear magnetoelectric (ME) effect - the electric polarization proportional to the applied magnetic field and the magnetization induced by the electric field. Here, we report the experimental study of the holmium-doped langasite, Ho$_{x}$La$_{3-x}$Ga$_5$SiO$_{14}$, showing a puzzling combination of linear and highly non-linear ME responses in the disordered paramagnetic state: its electric polarization grows linearly with the magnetic field but oscillates many times upon rotation of the magnetic field vector. We propose a simple phenomenological Hamiltonian describing this unusual behavior and derive it microscopically using the coupling of magnetic multipoles of the rare-earth ions to the electric field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا