ترغب بنشر مسار تعليمي؟ اضغط هنا

The structure of typical clusters in large sparse random configurations

45   0   0.0 ( 0 )
 نشر من قبل Jean Bertoin
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The initial purpose of this work is to provide a probabilistic explanation of a recent result on a version of Smoluchowskis coagulation equations in which the number of aggregations is limited. The latter models the deterministic evolution of concentrations of particles in a medium where particles coalesce pairwise as time passes and each particle can only perform a given number of aggregations. Under appropriate assumptions, the concentrations of particles converge as time tends to infinity to some measure which bears a striking resemblance with the distribution of the total population of a Galton-Watson process started from two ancestors. Roughly speaking, the configuration model is a stochastic construction which aims at producing a typical graph on a set of vertices with pre-described degrees. Specifically, one attaches to each vertex a certain number of stubs, and then join pairwise the stubs uniformly at random to create edges between vertices. In this work, we use the configuration model as the stochastic counterpart of Smoluchowskis coagulation equations with limited aggregations. We establish a hydrodynamical type limit theorem for the empirical measure of the shapes of clusters in the configuration model when the number of vertices tends to $infty$. The limit is given in terms of the distribution of a Galton-Watson process started with two ancestors.

قيم البحث

اقرأ أيضاً

The theme of this paper is the derivation of analytic formulae for certain large combinatorial structures. The formulae are obtained via fluid limits of pure jump type Markov processes, established under simple conditions on the Laplace transforms of their Levy kernels. Furthermore, a related Gaussian approximation allows us to describe the randomness which may persist in the limit when certain parameters take critical values. Our method is quite general, but is applied here to vertex identifiability in random hypergraphs. A vertex v is identifiable in n steps if there is a hyperedge containing v all of whose other vertices are identifiable in fewer than n steps. We say that a hyperedge is identifiable if every one of its vertices is identifiable. Our analytic formulae describe the asymptotics of the number of identifiable vertices and the number of identifiable hyperedges for a Poisson random hypergraph on a set of N vertices, in the limit as N goes to infinity.
The integer points (sites) of the real line are marked by the positions of a standard random walk. We say that the set of marked sites is weakly, moderately or strongly sparse depending on whether the jumps of the standard random walk are supported b y a bounded set, have finite or infinite mean, respectively. Focussing on the case of strong sparsity we consider a nearest neighbor random walk on the set of integers having jumps $pm 1$ with probability $1/2$ at every nonmarked site, whereas a random drift is imposed at every marked site. We prove new distributional limit theorems for the so defined random walk in a strongly sparse random environment, thereby complementing results obtained recently in Buraczewski et al. (2018+) for the case of moderate sparsity and in Matzavinos et al. (2016) for the case of weak sparsity. While the random walk in a strongly sparse random environment exhibits either the diffusive scaling inherent to a simple symmetric random walk or a wide range of subdiffusive scalings, the corresponding limit distributions are non-stable.
124 - Tao Qian 2020
Studies of sparse representation of deterministic signals have been well developed. Amongst there exists one called adaptive Fourier decomposition (AFD) established through adaptive selections of the parameters defining a Takenaka-Malmquist system in one-complex variable. The AFD type algorithms give rise to sparse representations of signals of finite energy. The multivariate generalization of AFD is one called pre-orthogonal AFD (POAFD), the latter being established with the context Hilbert space possessing a dictionary. The purpose of the present study is to generalize both AFD and POAFD to random signals. We work on two types of random signals. One is those expressible as the sum of a deterministic signal with an error term such as a white noise; and the other is, in general, as mixture of several classes of random signals obeying certain distributive law. In the first part of the paper we develop an AFD type sparse representation for one-dimensional random signals by making use analysis of one complex variable. In the second part, without complex analysis, we treat multivariate random signals in the context of stochastic Hilbert space with a dictionary. Like in the deterministic signal case the established random sparse representations are powerful tools in practical signal analysis.
We study the spectrum of a random multigraph with a degree sequence ${bf D}_n=(D_i)_{i=1}^n$ and average degree $1 ll omega_n ll n$, generated by the configuration model, and also the spectrum of the analogous random simple graph. We show that, when the empirical spectral distribution (ESD) of $omega_n^{-1} {bf D}_n $ converges weakly to a limit $ u$, under mild moment assumptions (e.g., $D_i/omega_n$ are i.i.d. with a finite second moment), the ESD of the normalized adjacency matrix converges in probability to $ uboxtimes sigma_{rm sc}$, the free multiplicative convolution of $ u$ with the semicircle law. Relating this limit with a variant of the Marchenko--Pastur law yields the continuity of its density (away from zero), and an effective procedure for determining its support. Our proof of convergence is based on a coupling between the random simple graph and multigraph with the same degrees, which might be of independent interest. We further construct and rely on a coupling of the multigraph to an inhomogeneous ErdH{o}s-Renyi graph with the target ESD, using three intermediate random graphs, with a negligible fraction of edges modified in each step.
100 - Antonio Auffinger , Si Tang 2015
We study the statistics of the largest eigenvalues of $p times p$ sample covariance matrices $Sigma_{p,n} = M_{p,n}M_{p,n}^{*}$ when the entries of the $p times n$ matrix $M_{p,n}$ are sparse and have a distribution with tail $t^{-alpha}$, $alpha>0$. On average the number of nonzero entries of $M_{p,n}$ is of order $n^{mu+1}$, $0 leq mu leq 1$. We prove that in the large $n$ limit, the largest eigenvalues are Poissonian if $alpha<2(1+mu^{{-1}})$ and converge to a constant in the case $alpha>2(1+mu^{{-1}})$. We also extend the results of Benaych-Georges and Peche [7] in the Hermitian case, removing restrictions on the number of nonzero entries of the matrix.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا